Lecture-Two

Dimensional Analysis

1- The Application of D.S and the Dimensional Analysis.

A- The concept.

A physical problem may be characterized by a group of dimensionless similarity parameters or variables rather than by the original dimensional variables. This gives a clue to reduction in the number of parameters requiring separate consideration in an experimental investigation.
Ex:- $R e=\frac{\rho V D_{h}}{\mu} \quad \operatorname{Re} \quad 2000 \sim 4000$ by varying V without change in any other independent dimensional variable.
In fact, the variation in the $R e$ physically implies the variation in any of the dimensional parameters defining it.

B- Dimensional Analysis.

The dimensional analysis is a mathematical technique by which can be determining many dimensionless parameters and solving several engineering problems.
There are two existing approaches:-
1- Indicial method. (Method One)
2- Buckingham's pitheorem. (Method Two)
The dimensional analysis can be explain by the following,

- The Various physical quantities used in fluid phenomenon can be expressed in terms of fundamental quantities or primary quantities.
- Fundamental quantities are Mass (M), Length (L), Time (T), Temperature (θ) is used for compressible flow.
- The quantities which are expressed in terms of the fundamental or primary quantities are called derived or secondary quantities as (velocity, area, acceleration)
- The expression for a derived quantities in terms of the primary quantities is called the dimension of the physically quantities.
- A quantity may either be expressed dimensionally in M-L-T or F-L-T system.

Ex. 1

Determine the dimensions of the following quantities.
(i) Discharge.
(ii) Kinematic viscosity.
(iii) Force.
(iv) Specific weight.

Sol.
(i) Discharge $=$ area * velocity
$=L^{2} * \frac{L}{T}=\frac{L^{3}}{T}=L^{3} T^{-1}$
(ii) Kinematic Viscosity(v) $=\mu / \rho$

Where (μ) given by $(\tau)=\mu \frac{d u}{d y}$
$\mu=\frac{\tau}{d u / d y}=\frac{\text { shearstress }}{\frac{L}{T} \times \frac{1}{L}}=\frac{\frac{\text { force }}{\text { Area }}}{\frac{1}{T}}$
$\mu=\frac{\text { mass } \times \text { acceleration }}{\text { Area } \times \frac{1}{T}}=\frac{M \times \frac{L}{T^{2}}}{L^{2} \times \frac{1}{T}}=\frac{M \times L}{L^{2} T^{2} \times \frac{1}{T}}$
$\mu=\frac{M}{L T}=M L^{-1} T^{-1}$
and $\rho=\frac{\text { mass }}{\text { volume }}=\frac{M}{L^{3}}=M L^{-3}$
$\therefore v=\frac{\mu}{\rho}=\frac{M L^{-1} T^{-1}}{M L^{-3}}=L^{2} T^{-1}$
(iii) Force $=$ mass * acceleration
$=M * \frac{\text { length }}{\text { Time }^{2}}=\frac{M L}{T^{2}}=M L T^{-2}$
(iv) Specific weight $=$ Weight/volume $=$ force/volume $=\frac{M L T^{-2}}{L^{3}}=M L^{-2} T^{-2}$

2- Buckingham's Pi Theorem. (Method-2)

Assume, a physical phenomenon is described by
$\boldsymbol{n}=$ number of independent variables like $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots . \mathrm{x}_{\mathrm{n}}$ the phenomenon may be expressed as
$F\left(x_{1}, x_{2}, x_{3}, \ldots \ldots x_{n}\right)=0$
$\boldsymbol{m}=$ number of fundamental dimensions like mass, time, length and temperature or force, length, time and temperature.
Buckingham's theorem defining as the phenomenon can be described in terms of ($\boldsymbol{n} \boldsymbol{- m}$) independent dimensionless group like $\pi_{1}, \pi_{2}, \ldots \ldots \ldots \pi_{n-m}$ where $\boldsymbol{\pi}$ terms, represent the dimensionless parameters and consist of different combinations of a number of dimensional variables out of the \boldsymbol{n} independent variables. Therefore Eq.(1) can be reduced to
$f\left(\pi_{1}, \pi_{2}, \ldots \ldots, \pi_{n-m}\right)=0$

3- Procedure for Determination π Terms.

$\boldsymbol{m}=$ Number of fundamental dimensions like mass, (M), time (T), Length (L), temperature (θ)
$\boldsymbol{n}=$ number of independent variables or quantities included in physical problem such as ($\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}-\cdots--$ A_{n}) where $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}-\cdots--\mathrm{A}_{\mathrm{n}}$ as pressure, viscosity and velocity, can also be expressed as $F 1\left(A_{1}, A_{2}, A_{3},----A_{n}\right)=0$
$(\boldsymbol{n}-\boldsymbol{m})=$ number of dimensionless parameter (π) like $\pi_{1}, \pi_{2}, \pi_{3}, \ldots \pi_{n-m}$
π, is represent the dimensionless parameters and consist of different combinitions of a number of dimensional variable. Mathematically, if any variable A_{1}, depends on independent variable $\mathrm{A}_{2} . \mathrm{A}_{3} \ldots \mathrm{~A}_{\mathrm{n}}$ the function $\mathrm{A}_{1}=F\left(A_{2}, A_{3}, \ldots A_{n}\right)$
According to π-theorem, Eq. (3) can be written in terms of π-terms (dimensionless groups). Therefore the above equation can reduced to
$F_{1}\left(\pi_{1}, \pi_{2}, \ldots \pi_{n-m}\right)=0$
The method of determining π parameters is

- Select (\boldsymbol{m}) of the (A) quantities with different dimensions
- The above selection which contains among them (\boldsymbol{m}) dimensions
- Using the (\boldsymbol{m}) selection as repeating variables together with one of the other A quantities for each (π). Each π-term contains ($\boldsymbol{m}+\boldsymbol{1}$) variables.
Note-1, It is essential that no one of the \boldsymbol{m} selected quantities used as repeating variable be derived from the other repeating variables.
Note-2, Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ contain M, L and T , not necessarily in each one, but collectively.
Then the first π parameter is made up as
$\pi_{1}=A_{2}^{x 1} A_{3}^{y 1} A_{4}^{z 1} A_{1}$
The second $\pi_{2}=A_{2}^{x 2} A_{3}^{y 2} A_{4}^{z 2} A_{5}$
And so on until $\pi_{n-m}=A_{2}{ }^{x_{n-m}} A_{3}{ }^{y_{n-m}} A_{4}^{Z_{n-m}} A_{n}$
In a bove eqn's the exponents are to be determined
- The dimensions of (A) quantities are substituted
- The exponents of M,L and T are set equal to zero in π parameters

There produce three equations in three unknowns for each π parameter, so that the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ exponents can be determined, and Hence the π parameter.

4- Selection of Repeating Variables (R.V).

1- (\boldsymbol{m}) repeating variable must contain jointly all the fundamental dimension
2- The repeating variable must not form the non-dimensional parameter among them.
3- As far as possible, the dependent variable should not be selected as repeating variable
4- No two repeating variables should have the same dimensions
5- The repeating variables should be chosen in such a way that one variable contains geometric property (e.g, length, L, diameter, d, height, h), other variable contains flow property (e.g velocity V , acceleration a) and the third variable contains fluid property (e.g mass density ρ, weight density W , dynamic viscosity μ)
(i)

```
L,V,\rho
```

(ii) $\mathrm{d}, \mathrm{V}, \rho$
(iii) $1, \mathrm{~V}, \mathrm{~m}$
(iv) $\mathrm{d}, \mathrm{V}, \mu$

Ex. 2

Show that the lift force F_{l} on airfoil can be express as $F_{L}=\rho V^{2} d^{2} \emptyset\left(\frac{\rho V d}{\mu}, \propto\right)$
Where $\rho=$ mass density , $\mathrm{V}=$ velocity of flow
$\mu=$ dynamic viscosity $\quad \alpha=$ Angle of incidence
$\mathrm{d}=\mathrm{A}$ characteristic depth
Sol.
Left force F_{L} is function of $; \rho, \mathrm{V}, \mathrm{d}, \mathrm{m}, \propto$ mathematically, $F_{L}=f(\mu, V, d, \rho, \propto)----(i)$
Or $F_{1}\left(F_{L}, \rho V, d \mu, \propto\right)=0-------(i i)$
\therefore Total number of variable, we have $\boldsymbol{n}=6$
Writing dimensions of each variable
$F_{L}=M L T^{-2}, \rho=M L^{-3}, V=L T^{-1}, d=L, \mu=M L^{-1} T^{-1}, \propto=M^{0} L^{0} T^{0}$
Thus, number of fundamental dimensions, $\boldsymbol{m}=3$
\therefore Number of π-terms $=n-m=6-3=\mathbf{3}$
Eq. (ii) can be written as : $F_{1}\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=0-----$ (iii)
Each π-term contains ($\boldsymbol{m}+\boldsymbol{1}$) variables, where $\boldsymbol{m}=3$ and also equal to repeating variables (R.V). Choosing
($\mathrm{d}, \mathrm{V}, \rho$) as R.V
$\pi_{1}=d^{a 1} \cdot V^{b 1} \cdot \rho^{c 1} \cdot F_{L}$
$\pi_{2}=d^{a 2} \cdot V^{b 2} \cdot \rho^{c 2} \cdot \mu$
$\pi_{3}=d^{a 3} \cdot V^{b 3} \cdot \rho^{c 3} . \propto$
π-term:
$\pi_{1}=d^{a 1} . V^{b 1} \cdot \rho^{c 1} \cdot F_{L}$
$M^{0} L^{0} T^{0}=L^{a 1}\left(L T^{-1}\right)^{b 1}\left(M L^{-3}\right)^{c 1}\left(M L T^{-2}\right)$
Equating the exponents of $\mathrm{M}, \mathrm{L}, \mathrm{T}$ respectively, we get
for $M: 0=c_{1}+1---\rightarrow c_{1}=-1$
for $L: 0=a_{1}+b_{1}-3 c_{1}+1$
for $T: 0=-b_{1}-2---\rightarrow b_{1}=-2$
$\therefore a_{1}=-b_{1}+3 c_{1}-1=2-3-1=-2$
Substituting the values of a_{1}, b_{1} and c_{1} in π_{1}, we get
$\pi_{1}=d^{-2} \cdot V^{-2} \cdot \rho^{-1} \cdot F_{L}=\frac{F_{L}}{\rho V^{2} d^{2}}$
π_{2} - term:
$\pi_{2}=d^{a_{2}} \cdot V^{b_{2}} \cdot \rho^{c_{2}} \cdot \mu$
$M^{0} L^{0} T^{0}=L^{a_{2}} .\left(L T^{-1}\right)^{b 2} .\left(M L^{-3}\right)^{c_{2}} .\left(M L^{-1} T^{-1}\right)$
Equating the exponents of M,L and T respectively, we get
for $M: 0=c_{2}+1-\rightarrow c_{2}=-1$
FOR L: $0=a_{2}+b_{2}-3 c_{2}-1$
For $T: 0=-b_{2}-1--\rightarrow b_{2}=-1$
$\therefore a_{2}=-b_{2}+3 c_{2}+1=1-3+1=-1$
Substituting the values of a_{2}, b_{2}, and c_{2} in π_{2}, we get
$\pi_{2}=d^{-1} \cdot V^{-1} \cdot \rho^{-1} \cdot \mu=\frac{\mu}{\rho V d}$
or $\pi_{2}=\frac{\rho V d}{\mu}$
π_{3} - term
$\pi_{3}=d^{a_{3}} . V^{b_{3}} . \rho^{c_{3}} . \propto$
$M^{0} L^{0} T^{0}=L^{a_{3}} .\left(L T^{-1}\right)^{b_{3}} .\left(M L^{-3}\right)^{c_{3}} .\left(M^{0} L^{0} T^{0}\right)$
Equating the exponents of M, L and T respectively, we get
for $M: 0=c_{3}+0--\rightarrow c_{3}=0$
for $L: 0=a_{3}+b_{3}-3 c_{3}+0$
for $T: 0=-b_{3}+0---\rightarrow b_{3}=0$
$\therefore a_{3}=0$
$\therefore \pi_{3}=d^{0} \cdot v^{0} \rho^{0} . \propto=\alpha$
Substituting the values of π_{1}, π_{2} and π_{3} in Eq. (iii), we get
$f_{1}\left(\frac{F_{L}}{\rho V^{2} d^{2}}, \frac{\rho V d}{\mu}, \propto\right)=0$
$\frac{F_{L}}{\rho V^{2} d^{2}}=\emptyset\left(\frac{\rho V d}{\mu}, \propto\right)$
or $\quad F_{L}=\rho V^{2} d^{2} \emptyset\left(\frac{\rho V d}{\mu}, \propto\right)$

Ex. 3

The discharge through a horizontal capillary tube is thought to depend upon the pressure drop per unit length, the diameter and the viscosity. Find the form of the discharge equation.
Sol.

Quantity	Dimensions
Discharge Q	$\mathrm{L}^{3} \mathrm{~T}^{-1}$
Pressure drop/length $\Delta \mathrm{p} / l$	$\mathrm{M} \mathrm{L}^{-2} \mathrm{~T}^{-2}$
Diameter D	L
Viscosity μ	$M \mathrm{~L}^{-1} \mathrm{~T}^{-1}$

Then $F\left(Q, \frac{\Delta p}{L}, D, \mu\right)=0$
Three dimension are used, and with four quantities these will be one π parameter
$\boldsymbol{n}=4, \boldsymbol{m}=3---\rightarrow \pi=n-m=4-3=1$
$\pi=Q^{X_{1}}\left(\frac{\Delta p}{l}\right)^{Y_{1}} D^{Z_{1}} \mu$
Substituting in the dimension gives
$\pi=\left(L^{3} T^{-1}\right)^{X_{1}}\left(M L^{-2} T^{-2}\right)^{Y_{1}}\left(L^{Z_{1}}\right)\left(M L^{-1} T^{-1}\right)=M^{0} L^{0} T^{0}$
The exponents of each dimension must be the same on both sides of the equation.
With L; $3 X_{1}-2 Y_{1}+Z_{1}-1=0------(i)$
$\mathrm{M} ; Y_{1}+1=0---\rightarrow Y_{1}=-1$
$\mathrm{T} ;-X_{1}-2 Y_{1}-1=0-----\rightarrow X_{1}=1$
From Eq. (i) $Z_{1}=-4$
$\pi=Q \frac{\mu}{\left(\frac{\Delta p}{l}\right) D^{4}}$
After solving for Q
$Q=C \frac{\Delta p}{L} \frac{D^{4}}{\mu}$

Ex. 4

Consider pressure drop in a tube of length 1 , hydraulic diameter d, surface roughness \in, with fluid of density ρ and viscosity μ moving with average velocity U. Using Buckingham's π - theorem obtain an expression for $\Delta \mathrm{p}$.

Sol.

This can be expressed as
$f(\Delta p, U, d, l, \in, \rho, \mu)=0$
Now $\boldsymbol{n}=7$ since the phenomenon involves 7 independent parameters.

We select ρ, U, d as repeating variables (so that all 3 dimensions are represented)
Now, $4 \pi---\rightarrow$ (7-3) parameters are determined as
$\pi_{1}=\rho^{a_{1}} U^{b_{1}} d^{c_{1}} \Delta p$
$\pi_{2}=\rho^{a_{2}} U^{b_{2}} d^{c_{2}} \mu$
$\pi_{3}=\rho^{a_{3}} U^{b_{3}} d^{c_{3}} l$
$\pi_{4}=\rho^{a_{4}} U^{b_{4}} d^{c_{4}} \in$
Now basic units
$\rho---\rightarrow M L^{-3}$
$U-\rightarrow L T^{-1}$
$d \rightarrow--\rightarrow L$
$\Delta p--\rightarrow M L^{-1} T^{-2}$
$\mu---\rightarrow M L^{-1} T^{-1}$
$\in \rightarrow-\rightarrow L$
$l--\rightarrow . L$
All π parameters $---\rightarrow M^{0} L^{0} T^{0}$
$a_{1}=-1 ; b_{1}=-2 ; C_{1}=0$
$a_{2}=-1 ; b_{2}=-1 ; c_{2}=-1$
$a_{3}=0 ; b_{3}=0 ; c_{3}=-1$
$a_{4}=0 ; b_{4}=0 ; c_{4}=-1$
Thus writing $\pi_{1}=f\left(\pi_{2}, \pi_{3}, \pi_{4}\right)$
\therefore The π group can be written as follows,
$\pi_{1}=d^{0} V^{-2} \rho^{-1} \Delta p=\frac{\Delta p}{\rho V^{2}} \quad$ Eu . No.
$\pi_{2}=\frac{\mu}{d V \rho}$ or $\frac{d V \rho}{\mu} \quad \boldsymbol{R e} \cdot \boldsymbol{N}_{\boldsymbol{o}}$.
$\pi_{3}=d^{-1} V^{0} \rho^{0} l=\frac{l}{d}$
$\pi_{4}=\frac{\epsilon}{d}$
\therefore The new relation can be writing
$f_{1}\left(\frac{\Delta p}{\rho V^{2}}, \frac{d V \rho}{\mu}, \frac{l}{d}, \frac{\epsilon}{d}\right)=0$
When conclude $\Delta \mathrm{p}$
$\frac{\Delta p}{\rho V^{2}}=f_{2}\left(\operatorname{Re}, \frac{l}{d}, \frac{\epsilon}{d}\right)$
$\rho=\frac{W}{g}$
$\frac{\Delta p}{W}=\frac{V^{2}}{2 g} \cdot f_{2}\left(\operatorname{Re}, \frac{l}{d}, \frac{\epsilon}{d}\right)$
The pressure drop is function of $(\mathrm{L} / \mathrm{d})$ exponent to(1) in darcy equation
$\frac{\Delta p}{W}=\frac{V^{2}}{2 g} \cdot \frac{L}{d} \cdot f_{3}\left(R e, \frac{\epsilon}{d}\right)$
Therefore
$\frac{\Delta p}{W}=($ Factor $\boldsymbol{f})\left(\frac{L}{d}\left(\frac{V^{2}}{2 g}\right)\right)$

Ex. 5

Assume the input power to a pump is depend on the fluid weight per unit volume, flow rate and head produced by the pump. Create a relation by dimensional analysis between the power and other variables by two methods.

Method-2

$F(P, W, Q, H)=0$
The variables in dimensions are
$\mathrm{P}-\rightarrow \mathrm{FLT}^{-1}$
$\mathrm{Q} \rightarrow-\mathrm{L}^{3} \mathrm{~T}^{-1}$
$\mathrm{W} \rightarrow \rightarrow \mathrm{FL}^{-3}$
$\mathrm{H}-\rightarrow \mathrm{L}$
The four variables in 3 fundamental dimensional $\therefore \pi$ group is $(4-3)=1$
Choice $\mathrm{Q}, \mathrm{W}, \mathrm{H}$ as variable with unknown exponent
$\therefore \pi_{1}=(Q)^{a_{1}}(W)^{b_{1}}(H)^{c_{1}} P$
or $\pi_{1}=\left(L^{3 a_{1}} T^{-a_{1}}\right)\left(F^{b_{1}} L^{-3 b_{1}}\right)\left(L^{c_{1}}\right)\left(F L T^{-1}\right)=F^{0} L^{0} T^{0}$
Exponent equality foe $\mathrm{F}, \mathrm{L}, \mathrm{T}$ producing
$\mathrm{a}_{1}=-1, \mathrm{~b}_{1}=-1, \mathrm{c}_{1}=-1$
$\therefore \pi_{1}=\mathrm{Q}^{-1} \mathrm{~W}^{-1} \mathrm{H}^{-1} \mathrm{P}=\frac{\mathrm{P}}{\mathrm{QWH}}$
$\pi_{1}=F\left(\frac{P}{Q W H}\right)$
$P=K(Q W H)$

Ex. 6

Assume the input power to a pump is depend on the fluid weight (W), flow rate (Q) and head produced by pump (H), create a relation by dimension analysis between the power input and other variables by using FLT system.
Sol.

Step-1

Quantities	Dimensions
Power (P)	$\mathrm{F} \mathrm{L} \mathrm{T}^{-1}$
Flow rate (Q)	$\mathrm{L}^{3} \mathrm{~T}^{-1}$
Weight(W) per unit volume	$F L^{-3}$
Head (H)	L

Step-2:- there are four variables \& (3) fundamental dimensions
$\therefore \pi$ group is $(4-3)=1$

Step-3:

Choice $\mathrm{Q}, \mathrm{W}, \mathrm{H}$ as variable with unknown exponent.
$F_{1}(P, W, Q, H)=0 \rightarrow F_{2}\left(\pi_{1}\right)=0$
$\therefore \pi_{1}=(Q)^{a_{1}}(W)^{b_{1}}(H)^{c_{1}} P$
Or $\pi_{1}=\left(L^{3} T^{-1}\right)^{a_{1}}\left(F L^{-3}\right)^{b_{1}}(L)^{C_{1}}\left(F L T^{-1}\right)^{1}=F^{0} L^{0} T^{0}$
F] $b_{1}+1=0 \rightarrow-\rightarrow b_{1}=-1$
L] $3 a_{1}-3 b_{1}+c_{1}+1=0 \quad \rightarrow 3 a_{1}+c_{1}=-4$
T] $-a_{1}-1=0 \longrightarrow \longrightarrow a_{1}=-1$
$\therefore c_{1}=-1$
$\therefore \pi_{1}=Q^{-1} W^{-1} H^{-1} P=\frac{P}{Q W H}$
$\pi_{1}=f\left(\frac{P}{Q W H}\right)$
$P=K(Q, W, H)$

Ex. 7

Assuming the resistant force for a body submerged in a fluid is function of (density ρ, velocity V , viscosity μ and characteristic length L). Conclude a general equation of resistant force by using FLT system.
Sol.
Step. 1

Quantities	Dimension
Force(F)	F
Density (ρ)	$F L^{-4} T^{2}$
Velocity (V)	$L T^{-1}$
Viscosity (μ)	$F L^{-2} T$
Length (L)	L

$F_{1}(F, \rho, V, L, \mu)=0 \quad n=5, m=3$
Step-2
We have 5 variables with 3 fundamental dimensions
$\therefore \pi$ groups $=5-3=2$
We choice 3 repeated variables of unknown exponents
$\pi_{1}=(L)^{a_{1}}(V)^{b_{1}}(\rho)^{c_{1}} F=(L)^{a_{1}}\left(L T^{-1}\right)^{b_{1}}\left(F T^{2} L^{-4}\right)^{c_{1}}(F)=F^{0} L^{0} T^{0}$
F] $\quad C_{1}+1=0 \rightarrow-\rightarrow C_{1}=-1$
L] $\quad a_{1}+b_{1}-4 c_{1}=0 \rightarrow \rightarrow a_{1}+b_{1}=-4$
T] $\quad-b_{1}+2 C_{1}=0 \rightarrow b_{1}=-2 ; \therefore a_{1}=-2$
$\therefore \pi_{1}=\mathrm{L}^{-2} \mathrm{~V}^{-2} \rho^{-1} \mathrm{~F}=\mathrm{F} / \mathrm{L}^{2} \mathrm{~V}^{2} \rho$
$\pi_{2}=(\mathrm{L})^{\mathrm{a}_{2}}(\mathrm{~V})^{\mathrm{b}_{2}}(\rho)^{\mathrm{C}_{2}} \mu=(\mathrm{L})^{\mathrm{a}_{2}}\left(L T^{-1}\right)^{b_{2}}\left(F L^{-4} T^{2}\right)^{C_{2}}\left(F L^{-2} T\right)=F^{0} L^{0} T^{0}$
F] $\quad C_{2}+1=0 \rightarrow-\rightarrow C_{2}=-1$
L] $\quad a_{2}+b_{2}-4 C_{2}-2=0$

$$
\mathrm{a}_{2}+\mathrm{b}_{2}+2=--\rightarrow \mathrm{a}_{2}+\mathrm{b}_{2}=-2
$$

Subject: Fluid Mechanics -II
Dr. Mustafa B. Al-hadithi

T] $\quad-b_{2}+2 C_{2}+1=0 \longrightarrow \longrightarrow b_{2}=-1$
$\therefore \mathrm{a}_{2}=-1$
$\therefore \pi_{2}=L^{-1} V^{-1} \rho^{-1} \mu=\frac{\mu}{L V \rho}-\longrightarrow \pi_{2}^{-1}=R_{e}$
$\therefore f\left(\pi_{1}, \pi_{2}\right)=0$
$F_{1}\left(\pi_{1}, \pi_{2}^{-1}\right)=0 \longrightarrow \longrightarrow F_{1}\left(\frac{F}{L^{2} V^{2} \rho}, R_{e}\right)=0$
$\therefore F=L^{2} V^{2} \rho F_{2}\left(R_{e}\right)$

