Lecture-Four

Laminar Flow in Pipe of Circular Cross-Section.

1- Hagen-Poiseuille Flow.

Consider fully developed laminar flow through a straight tube of circular cross - section as in Fig.(1). Rotational symmetry is considered to make the flow two - dimensional axisymmetry. Let us take \boldsymbol{x}-axis as the axial of the tube along which all the fluid particles travel, i.e.
$V_{x} \neq 0, V_{r}=0, V_{\theta}=0$
Now from continuity equation, we obtain
$\frac{\partial V_{r}}{\partial r}+\frac{V_{r}}{r}+\frac{\partial V_{x}}{\partial x}=0\left[\right.$ for rotational symmetry, $\left.\frac{1}{r} \cdot \frac{\partial v_{\theta}}{\theta}=0\right]$
This means $V_{x}=V_{x}(r, t)$
Invoking $\left[V_{r}=0, V_{\theta}=0 \frac{\partial V_{x}}{\partial x}=0\right.$, and $\frac{\partial}{\partial \theta}$ (any quantitng) $=0$]
With Navier-Stokes equation, we obtain in the x-direction
$\frac{\partial V_{x}}{\partial t}=-\frac{1}{\rho} \cdot \frac{\partial p}{\partial x}+v\left(\frac{\partial^{2} V_{x}}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial V_{x}}{\partial r}\right)$
For steady flow, the governing equation becomes
$\frac{\partial^{2} V_{x}}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial V_{x}}{\partial r}=\frac{1}{\mu} \frac{d p}{d x}$
The boundary conditions are
i) At $r=0, V_{x}$ is finit \& $\frac{\partial V_{x}}{\partial r}=0$
ii) $\operatorname{At} r=R, V_{x}=0$ yield Eq.(2) can be written after multiplying by r
$r \frac{d^{2} V_{x}}{d r^{2}}+\frac{d V_{x}}{d r}=\frac{1}{\mu} \cdot \frac{d p}{d x} r$
or $\frac{d}{d r}\left(r \frac{d V_{x}}{d r}\right)=\frac{1}{\mu} \frac{d p}{d x} r$ by integration
$r \frac{d V_{x}}{d r}=\frac{1}{2 \mu} \cdot \frac{d p}{d x} r^{2}+A$
$\frac{d V_{x}}{d r}=\frac{1}{2 \mu} \cdot \frac{d p}{d x} r+\frac{A}{r}$ by integration
$V_{x}=\frac{1}{4 \mu} \cdot \frac{d p}{d x} r^{2}+A \ln r+B$
At $r=0 V_{x}=$ finite \& $\frac{d V_{x}}{d r}=0 \rightarrow A=0$
at $r=R, V_{x}=0$
$B=-\frac{1}{4 \mu} \cdot \frac{d p}{d x} . R^{2}$
$\therefore V_{x}=\frac{R^{2}}{4 \mu}\left(-\frac{d p}{d x}\right)\left[1-\frac{r^{2}}{R^{2}}\right]$
This shows that the axial velocity profile in a fully developed laminar pipe flow is having parabolic variation along r.
At $r=0$, as such,$V_{x}=V_{x \max }$
$V_{x \text { max }}=\frac{R^{2}}{4 \mu}\left(-\frac{d p}{d x}\right)$

Figure 1: Flow in circular pipe.

2- Volumetric Flow Rate.

The average velocity in pipe is
$V_{a v .}=\frac{Q}{\pi R^{2}}=\frac{\int_{0}^{R} 2 \pi \mathrm{r} \mathrm{V}_{\mathrm{x}}(\mathrm{r}) \mathrm{dr}}{\pi \mathrm{R}^{2}}$ substitute Eq. 3
or $V_{a v}=\frac{\frac{2 \pi R^{2}}{4 \mu}\left(-\frac{d p}{d x}\right)\left[\frac{R^{2}}{2}-\frac{R^{4}}{4 R^{2}}\right]}{\pi \mathrm{R}^{2}}$
$V_{a v .}=\frac{R^{2}}{8 \mu}\left(-\frac{d p}{d x}\right)=\frac{1}{2} V_{x \text { max }} \rightarrow V_{x \text { max }}=2 V_{a v}$
Now, the discharge \boldsymbol{Q} through a pipe is given by
$Q=\pi R^{2} V_{a v}$
$Q=\pi R^{2} \frac{R^{2}}{8 \mu}\left(-\frac{d p}{d x}\right)$
or $Q=-\frac{\pi d^{4}}{128 \mu}\left(\frac{d p}{d x}\right)$
From Eq's 4 \& 5
$\frac{p_{1}-p_{2}}{L}=4 V_{\max } \frac{\mu}{R^{2}}=32 \mu \frac{V_{a v}}{d^{2}}$
Eq. 8 is known as the Hagen- Poiseuille equation.

Ex. 1

Oil mass density is $800 \mathrm{~kg} / \mathrm{m}^{3}$ and dynamic viscosity is $0.002 \mathrm{~kg} / \mathrm{m} . \mathrm{s}$ flow through 50 mm diameter, pipe length is 500 m and the discharge flow rate is $0.19 * 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$ determine
i) Reynolds number of flow.
ii) Center line velocity.
iii) Loss of pressure in 500 m length.
iv) Pressure gradient.
v) Wall shear stress.

Sol.
$V_{a v .}=\frac{4 Q}{\pi d^{2}}=\frac{4 * 0.19 * 10^{-3}}{\pi *(0.05)^{2}}=0.0968 \frac{\mathrm{~m}}{\mathrm{~s}}$
i) $\quad R_{e}=\frac{V d \rho}{\mu}=\frac{0.0968 * 0.05 * 800}{0.002}=1936.0$
ii) $\quad V_{x \text { max }}=2 V_{a v .}=2 * 0.0968=0.1936 \frac{\mathrm{~m}}{\mathrm{~s}}$
iii) From Eq. 7.26

$$
\frac{p_{1}-p_{2}}{L}=4 V_{\max } \frac{\mu}{R^{2}}=32 \mu \frac{V_{a v}}{d^{2}}
$$

$\therefore p_{1}-p_{2}=\frac{32 \mu V_{a v} L}{d^{2}}=\frac{32 * 0.002 * 0.0968 * 500}{(0.05)^{2}}=1239.04 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
iv) $\frac{d p}{d L}=\frac{p_{1}-p_{2}}{L}=\frac{1239.04}{500}=\frac{2.478 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}}{m}=2.478 \mathrm{~Pa} / \mathrm{m}$
v) $\quad \tau_{0}=\frac{\left(p_{1}-p_{2}\right) d}{4 L}=(1239.04) * \frac{0.05}{4 * 500}=0.03098 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}, E q .10$

3- Shear Stress in Horizontal Pipe.

A force balance for steady flow in horizontal pipe as in Fig. 2 yields
$p_{1}\left(\pi r^{2}\right)-p_{2}\left(\pi r^{2}\right)-\tau(2 \pi r L)=0$
or $\tau=\frac{\left(p_{1}-p_{2}\right) r}{2 L}$
From Eq. 9
at $r=0 \tau=0$
$r=R \quad \tau=\tau_{0}$
$\tau_{0}=\frac{\left(p_{1}-p_{2}\right) d}{4 L}$
Eq. 9 is valid for laminar \& turbulent flow.
$\left(\frac{p_{1}-p_{2}}{\rho g}\right)$ Represent the energy drop per unit weight $\left(h_{L}\right)$ multiply Eq. 9 by ($\rho \mathrm{g} / \rho \mathrm{g}$) yields
$\tau=\frac{\rho g r}{2 L}\left(\frac{p_{1}-p_{2}}{\rho g}\right)=\frac{\rho g h_{L}}{2 L} r$
$\therefore h_{L}=\frac{2 \tau_{0} L}{\rho g R}=\frac{4 \tau_{0} L}{\rho g d}$
$\tau=\tau_{0}$ at $r=R$

Figure 2: Forces on element in horizontal pipe.

4- Shear Stress in Inclined Pipe.

The energy equation may be written in pipe when related the loss to available energy reduction as in Fig.(a)
$\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{f_{1-2}}$
Since the velocity head $\left(\frac{V^{2}}{2 g}\right)$ is the same

$h_{f}=\frac{p_{1}-p_{2}}{\rho g}+z_{1}-z_{2}$
$\therefore h_{f}=\frac{\Delta p}{\rho g}+\Delta z$
Applying the linear - momentum eqn. in the L-direction
$\sum F_{l}=0=\left(p_{1}-p_{2}\right) A+\gamma A L \sin \theta-\tau_{0} L P=\dot{m}\left(V_{2}-V_{1}\right)=0$
(P) is the wetted perimeter of the conduit ,i.e , the portion of the perimeter where the wall is in contact with the fluid when the conduit not circular pipe.
$L \sin \theta=z_{1}-z_{2}$
$\frac{p_{1}-p_{2}}{\rho g}+z_{1}-z_{2}=\frac{\tau_{0} L P}{\rho g A}$
From Eq. 13\& 15
$h_{f}=\frac{\tau_{0} L P}{\rho g A}$
From experiment
$\tau_{0}=\lambda \frac{\rho}{2} V^{2}$
$\therefore h_{f}=\lambda \frac{\rho}{2} V^{2} \frac{L P}{\gamma A}=\lambda \frac{L}{R} \frac{V^{2}}{2 g}$
$\mathrm{R}_{\mathrm{h}}=\mathrm{A} / \mathrm{P}$
$\mathrm{R}_{\mathrm{h}}=$ hydraulic Radius of the conduit
For a pipe $\mathrm{R}_{\mathrm{h}}=\mathrm{d} / 4 ; \lambda=\mathrm{f} / 4$
Where λ is the non-dimensional factor, the h_{f} head loss due to friction can be written as follows,
$\therefore h_{f}=\frac{f}{4} \frac{L}{d} \frac{V^{2}}{2 g}=f \frac{L}{d} \frac{V^{2}}{2 g}$
Eq. 19 is the Darcy - Weisbach equation, valid for duct flows of any cross-section and for laminar and turbulent flow, \boldsymbol{f} is the friction factor $\boldsymbol{f}=4 \lambda$
By equating Eq's 12 \& 19
$\frac{4 \tau_{0} L}{\rho g d}=f \frac{L}{d} \frac{V^{2}}{2 g}$
$\therefore \tau_{0}=\frac{f \rho V^{2}}{8}$
In Hagen-Poiseuille eqn.
$V_{a v}=\frac{\Delta p d^{2}}{32 \mu L} \quad$ From Eq. 8
$\Delta p=\rho g h_{f}-\rightarrow \rightarrow h_{f}=\frac{\Delta p}{\rho g}$
$\therefore V_{a v}=\frac{\rho g h_{f} d^{2}}{32 \mu L}$
$h_{f}=\frac{32 V_{a v} \mu L}{\rho g d^{2}}=f \frac{L}{d} \frac{V^{2}}{2 g}$
$=\left(\frac{64 V_{a v} \mu L}{2 \rho g d^{2}}\right)=\frac{\frac{64}{\rho d V_{a v}}}{\mu} \frac{L}{d} \frac{V_{a v}{ }^{2}}{2 g}=\frac{64}{R_{e}} \frac{L}{d} \frac{V_{a v}{ }^{2}}{2 g}$
$h_{f}=f \frac{L}{d} \frac{V_{a v}{ }^{2}}{2 g}=\frac{64}{R_{e}} \frac{L}{d} \frac{V_{a v}{ }^{2}}{2 g}$
$\therefore f=\frac{64}{R e}$
It applies to all roughness and may be used for the solution of laminar flow problems in pipes.
From above equations the laminar head loss as followes
$h_{f(\text { laminar })}=\frac{64}{R e} \frac{L}{d} \frac{V_{a v}^{2}}{2 g}=\frac{32 \mu L V_{a v}}{\rho g d^{2}}=\frac{128 \mu L Q}{\pi \rho g d^{4}}$
From Eq. 4
$p_{1}-p_{2}=\frac{4 V_{\max } \mu L}{R^{2}}=\frac{32 V_{\text {av }} \mu L}{d^{2}}$
Pressure drop per unit weight
$h_{f}=\frac{\Delta p}{\rho g}=\frac{32 \mu L V_{a v}}{\rho g d^{2}}$ for laminar flow

Ex. 2

An oil of viscosity $0.9 \mathrm{Ns} / \mathrm{m}^{2}$ and S.G. 0.9 is flowing through a horizontal pipe of 60 mm diameter. If the pressure drop in 100 m length of the pipe is $1800 \mathrm{kN} / \mathrm{m}^{2}$, determine:
(i) The rate of flow of oil.
(ii) The center-line velocity.
(iii) The total friction drags over 100 m length.
(iv) The power required to maintain the flow.
(v) The velocity gradient at the pipe wall.
(vi) the velocity and shear stress at 8 mm from the wall

Sol.

Area of the pipe,
$A=\frac{\pi}{4} *(0,06)^{2}=2.827 * 10^{-3}\left(\mathrm{~m}^{2}\right)$ Pressure drop in (100m) length of the pipe, $\Delta p=1800 \mathrm{kN} / \mathrm{m}^{2}$
i) the rate of flow, Q
$p_{1}-p_{2}=\Delta p=\frac{32 \mu V_{a v} L}{d^{2}}$
$V_{a v}=\frac{\Delta p d^{2}}{32 \mu L}$
$\therefore V_{a v}=\frac{1800 * 10^{3} *(0.06)^{2}}{32 * 0.9 * 100}=2.25 \frac{\mathrm{~m}}{\mathrm{~s}}$
Reynolds number, $R e \quad=\frac{\rho V d}{\mu}=\frac{0.9 * 1000 * 2.25 * 0.06}{0.9}=135$
As Re is less than 2000, the flow is laminar and the rate of flow is,

$$
Q=A * V_{a v}=2.827 * 10^{-3} * 2.25=6.36 * 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=6.36 \frac{\mathrm{lit}}{\mathrm{~s}}
$$

ii) the center-line velocity, $V_{\max }$

$$
V_{\max }=2 V_{a v}=2 * 2.25=4.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

iii) the total frictional drag over (100m) length

$$
\text { From } \tau_{0}=\frac{\left(p_{1}-p_{2}\right) d}{4 L}
$$

$\therefore \tau_{0}=1800 * 10^{3} * \frac{0.06}{4 * 100}=270 \mathrm{~N} / \mathrm{m}^{2}$
\therefore Friction drag for $(100 \mathrm{~m})$ length
$F_{d}=\tau_{0} * A_{s}=\tau_{0} * \pi d L=270 * \pi * 0.06 * 100$
$F_{d}=5089 \mathrm{~N}$
(iv) The power required to maintain the flow, P ,
$P=F_{d} * V_{a v}=5089 * 2.25=11451 \mathrm{~W}$
$=15.35 \mathrm{~h} . \mathrm{p}$
Alternatively,

$$
P=Q . \Delta p=0.00636 * 1800 * 10^{3}=11448 W
$$

(v) The velocity gradient at the pipe wall, $\left(\frac{d u}{d y}\right)_{y=0}$;
$\tau_{0}=\mu \cdot\left(\frac{\partial u}{\partial y}\right)_{y=0}$
or $\left(\frac{\partial u}{\partial y}\right)_{y=0}=\frac{\tau_{0}}{\mu}=\frac{270}{0.9}=300 \mathrm{~s}^{-1}$
(vi) the velocity and shear stress at (8 mm) from the wall,
$V=\frac{R^{2}}{4 \mu}\left(-\frac{\partial p}{\partial x}\right)\left(1-\frac{r^{2}}{R^{2}}\right)$
Or $V=-\frac{1}{4 \mu} \cdot \frac{\partial p}{\partial x}\left(R^{2}-r^{2}\right)$
Here, $y=8 \mathrm{~mm}=0.008 \mathrm{~m}$
But $y=$ R-r
$\therefore 0.008=0.03-r--\rightarrow r=0.022 m$
$\therefore V_{(8 m m)}=+\frac{1}{4 * 0.9} * \frac{1800 * 10^{3}}{100}\left(0.03^{2}-0.022^{2}\right)=2.08 \frac{\mathrm{~m}}{\mathrm{~s}}$

For linear relation $\frac{\tau}{r}=\frac{\tau_{0}}{R}-\longrightarrow \rightarrow \tau_{(8 m m)}=r * \frac{\tau_{0}}{R}=0.022 * \frac{270}{0.03}=198 \mathrm{~N} / \mathrm{m}^{2}$
Or $\tau=\frac{\Delta p}{2 L} * r \quad$ from Eq.7.27
$\tau=1800 * 10^{3} * \frac{0.022}{2 * 100}=198 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Table 1: Summary of used equations in pipe
Velocity in circular pipe. $\quad V_{x}=\frac{R^{2}}{4 \mu}\left(-\frac{\partial p}{\partial x}\right)\left[1-\frac{r^{2}}{R^{2}}\right]$
$V_{\max }$ (max. velocity)
$V_{a v}$ (Average velocity)

Pressure loss along pipe

$$
\begin{gathered}
V_{\max }=2 V_{a v} \\
V_{a v}=\frac{R^{2}}{8 \mu}\left(-\frac{d p}{d x}\right)=\frac{1}{2} V_{\max }
\end{gathered}
$$

$$
\frac{\Delta p}{L}=4 V_{\max } \frac{\mu}{R^{2}}=\frac{32 \mu V_{a v}}{d^{2}}
$$

Wall shear stress

Shear stress at any \boldsymbol{r}

$$
\tau_{0}=\frac{\left(p_{1}-p_{2}\right) d}{4 L}
$$

$$
\tau=\frac{\left(p_{1}-p_{2}\right) r}{2 L}
$$

Energy losses

$$
h_{f}=\frac{4 \tau_{0} L}{\rho g d}
$$

Energy loss by friction
factor

$$
h_{f}=f \frac{L}{d} \frac{V^{2}}{2 g}
$$

Hydraulic diameter

$$
d_{h}=\frac{4 \text { Area }}{\text { wetted primeter }}
$$

Energy loss in Laminar flow

$$
\begin{array}{r}
h_{\text {flaminar }}=\frac{64}{R_{e}} \frac{L}{d} \frac{V_{a v}^{2}}{2 g}=\frac{32 \mu L V}{\gamma d^{2}} \\
=128 \mu L Q / \pi \rho g d^{4}
\end{array}
$$

