

Lecture-Four

Laminar Flow in Pipe of Circular Cross-Section.

<u>1-</u> <u>Hagen-Poiseuille Flow.</u>

Consider fully developed laminar flow through a straight tube of circular cross – section as in Fig.(1). Rotational symmetry is considered to make the flow two – dimensional axisymmetry. Let us take *x-axis* as the axial of the tube along which all the fluid particles travel, i.e.

$$\begin{aligned} &V_x \neq 0, V_r = 0, V_\theta = 0\\ \text{Now from continuity equation, we obtain} \\ &\frac{\partial V_r}{\partial r} + \frac{V_r}{r} + \frac{\partial V_x}{\partial x} = 0 \left[for \ rotational \ symmetry, \frac{1}{r} \cdot \frac{\partial v_\theta}{\theta} = 0 \right]\\ \text{This means } &V_x = V_x(r, t)\\ \text{Invoking } \left[V_r = 0, V_\theta = 0 \ \frac{\partial V_x}{\partial x} = 0, \ and \ \frac{\partial}{\partial \theta} (any \ quantitng) = 0 \right]\\ \text{With Navier-Stokes equation, we obtain in the x-direction} \\ &\frac{\partial V_x}{\partial t} = -\frac{1}{p} \cdot \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 V_x}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial V_x}{\partial r} \right) \qquad (1)\\ \text{For steady flow, the governing equation becomes} \\ &\frac{\partial^2 V_x}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial V_x}{\partial r} = \frac{1}{\mu} \frac{dp}{dx} \qquad (2)\\ \text{The boundary conditions are} \\ &i) \quad \text{At } r = 0, V_x \ is \ finit \ \& \frac{\partial V_x}{\partial r} = 0\\ ⅈ) \quad \text{At } r = R, V_x = 0 \ yield \ Eq.(2) \ can be written after multiplying by r \\ r \ \frac{d^2 V_x}{dr^2} + \frac{dV_x}{dr} = \frac{1}{\mu} \cdot \frac{dp}{dx} r \\ r \ by \ integration \\ r \ \frac{dV_x}{dr} = \frac{1}{2\mu} \cdot \frac{dp}{dx} r^2 + A \\ \frac{dV_x}{dr} = \frac{1}{2\mu} \cdot \frac{dp}{dx} r^2 + A \\ \frac{dV_x}{dr} = \frac{1}{2\mu} \cdot \frac{dp}{dx} r^2 + A \\ \text{At } r = 0 \ V_x = finite \ \& \frac{dV_x}{dr} = 0 \rightarrow A = 0 \\ at \ r = R, V_x = 0 \\ B = -\frac{1}{4\mu} \cdot \frac{dp}{dx} \cdot R^2 \\ \therefore \ V_x = \frac{R^2}{4\mu} \left(-\frac{dp}{dx} \right) \left[1 - \frac{r^2}{R^2} \right] \qquad (3) \end{aligned}$$

This shows that the axial velocity profile in a fully developed laminar pipe flow is having parabolic variation along r.

Figure 1: Flow in circular pipe.

<u>2-</u> Volumetric Flow Rate.

The average velocity in pipe is

$$V_{av.} = \frac{Q}{\pi R^2} = \frac{\int_0^R 2\pi r V_x(r) dr}{\pi R^2} \text{ substitute Eq. 3}$$
or $V_{av.} = \frac{\frac{2\pi R^2}{4\mu} \left(-\frac{dp}{dx}\right) \left[\frac{R^2}{2} - \frac{R^4}{4R^2}\right]}{\pi R^2}$

$$V_{av.} = \frac{R^2}{8\mu} \left(-\frac{dp}{dx} \right) = \frac{1}{2} V_{x \max} \rightarrow V_{x \max} = 2V_{av}$$
(5)

Now, the discharge Q through a pipe is given by

$$Q = \pi R^2 V_{av}$$
(6)

$$Q = \pi R^2 \frac{R^2}{8\mu} \left(-\frac{dp}{dx}\right)$$
(7)
From Eq. (6)

$$Q = -\frac{\pi d^4}{128\mu} \left(\frac{dp}{dx}\right)$$
(7)

From Eq.S 4 & 3

$$\frac{p_1 - p_2}{L} = 4 V_{max} \frac{\mu}{R^2} = 32\mu \frac{V_{av}}{d^2}$$
(8)

Eq. 8 is known as the *Hagen- Poiseuille* equation.

<u>Ex.1</u>

Oil mass density is 800 kg/m³ and dynamic viscosity is 0.002 kg/m.s flow through 50mm diameter, pipe length is 500 m and the discharge flow rate is $0.19*10^{-3}$ m³/s determine

- i) Reynolds number of flow.
- ii) Center line velocity.
- iii) Loss of pressure in 500 m length.
- iv) Pressure gradient.
- v) Wall shear stress.

<u>Sol.</u>

$$\overline{V_{av.}} = \frac{4Q}{\pi d^2} = \frac{4*0.19*10^{-3}}{\pi * (0.05)^2} = 0.0968 \frac{m}{s}$$

i) $R_e = \frac{Vd\rho}{\mu} = \frac{0.0968*0.05*800}{0.002} = 1936.0$

ii)
$$V_{x max} = 2V_{av} = 2 * 0.0968 = 0.1936 \frac{m}{s}$$

iii) From Eq. 7.26

$$\frac{p_1 - p_2}{L} = 4 V_{max} \frac{\mu}{R^2} = 32\mu \frac{V_{av}}{d^2}$$

$$\therefore p_1 - p_2 = \frac{32\mu V_{avL}}{d^2} = \frac{32*0.002*0.0968*500}{(0.05)^2} = 1239.04 \frac{N}{m^2}$$
iv) $\frac{dp}{dL} = \frac{p_1 - p_2}{L} = \frac{1239.04}{500} = \frac{2.478 \frac{N}{m^2}}{m} = 2.478 Pa/m$
iv) $q_2 = \frac{(p_1 - p_2)d}{L} = (1220.04) + \frac{0.05}{m} = 0.02000 \frac{N}{m}$ For 1

<u>3-</u> <u>Shear Stress in Horizontal Pipe.</u>

A force balance for steady flow in horizontal pipe as in Fig. 2 yields $p_1(\pi r^2) - p_2(\pi r^2) - \tau(2\pi rL) = 0$ or $\tau = \frac{(p_1 - p_2)r}{2L}$ (9) From Eq. 9

at $r = 0 \tau = 0$ $r = R \quad \tau = \tau_0$ $\tau_0 = \frac{(p_1 - p_2)d}{4L}$ (10)Eq. 9 is valid for laminar & turbulent flow. $\left(\frac{p_1-p_2}{\rho g}\right)$ Represent the energy drop per unit weight (h_L) multiply Eq.9 by $(\rho g/\rho g)$ yields $\tau = \frac{\rho g r}{2L} \left(\frac{p_1 - p_2}{\rho g} \right) = \frac{\rho g h_L}{2L} r$ $\therefore h_L = \frac{2\tau_0 L}{\rho g R} = \frac{4\tau_0 L}{\rho g d}$ (11)(12) $\tau = \tau_0 at r = R$

Figure 2: Forces on element in horizontal pipe.

<u>4-</u> <u>Shear Stress in Inclined Pipe.</u> The energy equation may be written in pipe when related the loss to available energy reduction as in Fig.(a)

Applying the linear – momentum eqn. in the L-direction

$$\sum F_l = 0 = (p_1 - p_2)A + \gamma AL \sin\theta - \tau_0 LP = \dot{m}(V_2 - V_1) =$$

(P) is the wetted perimeter of the conduit ,i.e., the portion of the perimeter where the wall is in contact with the fluid when the conduit not circular pipe.

0

$$L\sin\theta = z_{1} - z_{2}$$

$$\frac{p_{1} - p_{2}}{\rho g} + z_{1} - z_{2} = \frac{\tau_{0}LP}{\rho gA}$$
From Eq. 13 & 15
$$(15)$$

From Eq. 13& 15

$$h_f = \frac{\tau_0 LP}{\rho g A}$$
(16)
From experiment

$$\tau_0 = \lambda \frac{\rho}{2} V^2 \tag{17}$$

$\rho_{\rm XY2} LP = \rho V^2$	
$\therefore h_f = \lambda \frac{\rho}{2} V^2 \frac{LP}{\gamma A} = \lambda \frac{L}{R} \frac{V^2}{2g}$	(18)
$R_h = A/P$	
R_h = hydraulic Radius of the conduit	
For a pipe $R_h=d/4$; $\lambda=f/4$	
Where λ is the non-dimensional factor, the h_f head loss due to friction can be written as follows,	
$\therefore h_f = \frac{f}{4} \frac{L}{d} \frac{4}{2g} \frac{V^2}{2g} = f \frac{L}{d} \frac{V^2}{2g}$	(19)
Eq. 19 is the Darcy – Weisbach equation, valid for	duct flows of any cross-section and for laminar and
turbulent flow, f is the friction factor $f=4 \lambda$	
By equating Eq's 12 & 19	
$\frac{4\tau_0 L}{\rho g d} = f \frac{L}{d} \frac{V^2}{2g}$	
$\therefore \tau_0 = \frac{f \rho V^2}{2}$	(20)
In Hagen-Poiseuille eqn.	
$V_{av} = \frac{\Delta p d^2}{32\mu L}$ From Eq. 8	
$\Delta p = \rho g h_f \rightarrow h_f = \frac{\Delta p}{\rho g}$	
$\therefore V_{av} = \frac{\rho g h_f d^2}{32\mu L}$	
$h_f = \frac{32V_{av}\mu L}{\rho g d^2} = f \frac{L}{d} \frac{V^2}{2g}$	
$= \left(\frac{64V_{av}\mu L}{2\rho g d^2}\right) = \frac{\frac{64}{\rho dV_{av}}L}{\mu} \frac{L}{d} \frac{V_{av}^2}{2g} = \frac{64}{R_e} \frac{L}{d} \frac{V_{av}^2}{2g}$	
$h_f = f \frac{L}{d} \frac{V_{av}^2}{2g} = \frac{64}{R_e} \frac{L}{d} \frac{V_{av}^2}{2g}$	(21)
$\therefore f = \frac{64}{R_a}$	(22)
It applies to all roughness and may be used for the solution of laminar flow problems in pipes.	

It applies to all roughness and may be used for the solution of laminar flow problems in pipes. From above equations the laminar head loss as followes

$$h_{f(laminar)} = \frac{\frac{64}{Re} \frac{L}{d} \frac{V_{av}^2}{2g}}{\frac{32\mu L V_{av}}{\rho g d^2}} = \frac{\frac{128\mu L Q}{\pi \rho g d^4}}{\frac{\pi \rho g d^4}{\pi \rho g d^4}}$$
(23)
From Eq. 4
$$p_1 - p_2 = \frac{4V_{max}\mu L}{R^2} = \frac{32V_{av}\mu L}{d^2}$$
Pressure drop per unit weight
$$h_f = \frac{\Delta p}{\rho g} = \frac{32\mu L V_{av}}{\rho g d^2}$$
for laminar flow (24)

Ex.2

An oil of viscosity 0.9 Ns/m^2 and S.G. 0.9 is flowing through a horizontal pipe of 60 mm diameter. If the pressure drop in 100 m length of the pipe is $1800kN/m^2$, determine:

- (i) The rate of flow of oil.
- (ii) The center-line velocity.
- (iii) The total friction drags over 100 m length.
- (iv) The power required to maintain the flow.
- (v) The velocity gradient at the pipe wall.

(vi) the velocity and shear stress at 8 mm from the wall

Sol.

Area of the pipe, $A = \frac{\pi}{4} * (0,06)^2 = 2.827 * 10^{-3} (m^2)$ Pressure drop in (100m) length of the pipe, $\Delta p = 1800 \ kN/m^2$ the rate of flow,Q i) $p_1 - p_2 = \Delta p = \frac{32\mu V_{avL}}{d^2}$ $V_{av} = \frac{\Delta p \, d^2}{32\mu L}$ $\therefore V_{av} = \frac{1800 * 10^3 * (0.06)^2}{32 * 0.9 * 100} = 2.25 \frac{m}{s}$ Reynolds number, $Re = \frac{\rho V d}{\mu} = \frac{0.9 * 1000 * 2.25 * 0.06}{0.9} = 135$ As Re is less than 2000, the flow is laminar and the rate of flow is, $Q = A * V_{av} = 2.827 * 10^{-3} * 2.25 = 6.36 * 10^{-3} \frac{m^3}{s} = 6.36 \frac{lit}{s}$ the center-line velocity , V_{max} ii) $V_{max} = 2V_{av} = 2 * 2.25 = 4.5 \frac{m}{s}$ the total frictional drag over (100m) length iii) From $\tau_0 = \frac{(p_1 - p_2)d}{4L}$ $\therefore \tau_0 = 1800 * 10^3 * \frac{0.06}{4*100} = 270 N/m^2$ \therefore Friction drag for (100m) length $F_d = \tau_0 * A_s = \tau_0 * \pi dL = 270 * \pi * 0.06 * 100$ $F_d = 5089 N$ (iv) The power required to maintain the flow, P, $P = F_d * V_{av} = 5089 * 2.25 = 11451 W$ = 15.35 h.pAlternatively, $P = Q.\Delta p = 0.00636 * 1800 * 10^3 = 11448 W$ (v) The velocity gradient at the pipe wall, $\left(\frac{du}{dy}\right)_{y=0}$; $\tau_0 = \mu . \left(\frac{\partial u}{\partial y}\right)_{y=0}$ or $\left(\frac{\partial u}{\partial y}\right)_{y=0} = \frac{\tau_0}{\mu} = \frac{270}{0.9} = 300 \ s^{-1}$ (vi) the velocity and shear stress at (8mm) from the wall, $V = \frac{R^2}{4\mu} \left(-\frac{\partial p}{\partial x} \right) \left(1 - \frac{r^2}{R^2} \right)$ Or $V = -\frac{1}{4\mu} \cdot \frac{\partial p}{\partial x} (R^2 - r^2)$ Here, y = 8mm = 0.008mBut y = R-r $\div 0.008 = 0.03 - r - - \rightarrow r = 0.022m$ $\therefore V_{(8mm)} = +\frac{1}{4*0.9} * \frac{1800*10^3}{100} (0.03^2 - 0.022^2) = 2.08 \frac{m}{s}$

Subject: Fluid Mechanics -II Dr. Mustafa B. Al-hadithi

For linear relation
$$\frac{\tau}{r} = \frac{\tau_0}{R} - - \rightarrow \tau_{(8mm)} = r * \frac{\tau_0}{R} = 0.022 * \frac{270}{0.03} = 198 N/m^2$$

Or $\tau = \frac{\Delta p}{2L} * r$ from Eq. 7.27
 $\tau = 1800 * 10^3 * \frac{0.022}{2*100} = 198 \frac{N}{m^2}$

$V_x = \frac{R^2}{4\mu} \left(-\frac{\partial p}{\partial x} \right) \left[1 - \frac{r^2}{R^2} \right]$ Velocity in circular pipe. $V_{max} = 2V_{av}$ V_{max} (max. velocity) $V_{av} = \frac{R^2}{8\mu} \left(-\frac{dp}{dx} \right) = \frac{1}{2} V_{max}$ V_{av} (Average velocity) $\frac{\Delta p}{L} = 4V_{max}\frac{\mu}{R^2} = \frac{32\mu V_{av}}{d^2}$ Pressure loss along pipe $\tau_0 = \frac{(p_1 - p_2)d}{AI}$ Wall shear stress $\tau = \frac{(p_1 - p_2)r}{2I}$ Shear stress at any *r* $h_f = \frac{4\tau_0 L}{\rho a d}$ **Energy** losses $h_f = f \frac{L}{d} \frac{V^2}{2a}$ Energy loss by friction factor $d_h = \frac{4 \quad Area}{wetted \ primeter}$ Hydraulic diameter $h_{f \ laminar} = \frac{64}{R_e} \frac{L}{d} \frac{V_{av}^2}{2g} = \frac{32\mu LV}{\gamma d^2}$ Energy loss in Laminar flow $= 128 \mu LQ / \pi \rho g d^4$

Table 1: Summary of used equations in pipe