Lecture-Five

Viscous Turbulent Flow in Pipes

1- Friction Factor Calculations.

Experimentation shows the following to be true in turbulent flow.
1- The head loss varies directly as the length of the pipe.
2- The head loss varies almost as the square of the velocity.
3- The head loss varies almost inversely as the diameter.
4- The head loss depends upon the surface roughness of the interior pipe wall.
5- The head loss depends upon the fluid properties of density and viscosity.
6- The head loss is independent of the pressure.
$h_{f}=f \frac{L}{d} \cdot \frac{V^{2}}{2 g}$
$f=f(V, d, \rho, \mu, \epsilon, \epsilon, m)$
ϵ is a measure of the size of the roughness projection and has the dimension of a length.
ϵ is a measure of the arrangement or spacing of the roughness elements.
m is a form factor.
For smooth $\in=\epsilon^{\prime}=m=0 \rightarrow f=f(V, D, \rho, \mu)$ averaged into non-dimensionless group namely $\frac{\rho d V}{\mu}=R e$
For rough pipes the terms \in, \in ' may be made dimensionless by dividing by d
$\therefore f=F\left(\frac{\rho d V}{\mu}, \frac{\epsilon}{d}, \frac{\epsilon \prime}{d}, m\right)$ Proved by experimental plot of friction factor aganst the R_{e} on a log-log chart.
Blasius presented his results by an empirical formula is valid up to about $\operatorname{Re}=100000$
$f=\frac{0.316}{R e^{\frac{1}{4}}}$
In rough pipe ϵ / d is called relative roughness.
$f=F\left(R e, \frac{\epsilon}{d}\right)$ is limited and not permit variation of $\epsilon^{\prime} / \mathrm{d}$ or m .
Moody has constructed one of the most convenient charts for determining friction factors. In laminar flow, the straight line masked "laminar flow" and the Hangen-Poiseuille equation is applied and from which $f=64 / R e$

$$
h_{f}=f \frac{L}{d} \frac{V^{2}}{2 g} ; V_{a v}=\frac{\Delta p R^{2}}{8 \mu L}
$$

The Colebrook formula provides the shape of $\in / \mathrm{d}=$ constant curves in the transient region
$\frac{1}{\sqrt{f}}=-0.86 \ln \left(\frac{\frac{\epsilon}{d}}{3.7}+\frac{2.51}{R e \sqrt{f}}\right)$

2- Simple Pipe Problem.

Six variables enter into the problem for incompressible fluid, which are $\mathrm{Q}, \mathrm{L}, \mathrm{d}, h_{f}, \mathrm{~V}, \in$. Three of them are given ($\mathrm{L}, \mathrm{V}, \in$) and three will be find.
Now, the problems type can be solved as follows,

Problem	Given	To find (unknown)
I	Q, L, d, V, \in	h_{F}
II	h_{f}, L, d, V, \in	Q
III	h_{f}, Q, L, V, \in	d

In each of the above problem the following are used to find the unknown quantity
(i) The Darcy - Weisbach Equation.
(ii) The Continuity Equation.
(iii) The Moody diagram.

In place of the Moody diagram Fig. (1), the following explicit formula for (f) may be utilized with the restrictions placed on it
$f=0.0055\left[1+\left(2000 \cdot \frac{\epsilon}{d}+\frac{10^{6}}{R e}\right)^{\frac{1}{3}}\right]$ Moody equation
$4 * 10^{3} \leq \operatorname{Re} \quad \leq 10^{7} \& \frac{\epsilon}{D} \leq 0.01$
$f=\frac{1.325}{\left[\ln \left(\frac{\epsilon}{3.7 d}+\frac{5.74}{R e^{0.9}}\right)\right]^{2}} \quad 10^{-6} \leq \frac{\epsilon}{D} \leq 10^{-12}, 5000 \leq R_{e} \leq 10^{8}$
1% yield diff-with Darcy equation
The following formula can be used without Moody chart is
$\frac{1}{f^{1 / 2}} \approx-1.8 \log \left[\frac{6.9}{R e_{d}}+\left(\frac{\epsilon / d}{3.7}\right)^{1.11}\right]$
Eq. 3 is given by Haaland which varies less than 2% from Moody chart.

3- Solution Procedures.

I- Solution for \boldsymbol{h}_{f}.

With $\boldsymbol{Q}, \boldsymbol{\epsilon}$, and \boldsymbol{d} are known

$$
R \widetilde{e}=\frac{V d}{v}=\frac{4 Q}{\pi d v}
$$

And \boldsymbol{f} may be looked up in Fig.(1) or calculated from Eq. 2. Substitution of (\boldsymbol{f}) in Darcy equation (L-4,Eq-19) yields h_{f} the energy loss due to flow through the pipe per unit weight of fluid.

Ex. 1

Determine the head (energy) loss for flow of $140 \mathrm{l} / \mathrm{s}$ of oil $\mathrm{v}=0.00001 \mathrm{~m}^{2} / \mathrm{s}$ through 400 m pipe length of 200 mm - diameter cost-iron pipe

Sol.
$\overline{R \boldsymbol{e}}=\frac{4 Q}{\pi D v}=\frac{4(0.14)}{\pi(0.2)(0.00001)}=\mathbf{8 9 1 2 7}$
The relation roughness is $\in / \mathrm{D}=0.25 / 200=0.00125$ from a given diagram by interpolation $f=0.023$ by solution of Eq. 2, $f=0.0234$; hence
$h_{f}=f \frac{L}{d} \frac{V^{2}}{2 g}=0.023 \frac{400}{0.2}\left[\frac{0.14}{\frac{\pi}{4}(0.2)^{2}}\right]^{2} \frac{1}{2(9.81)}$
$h_{f}=46.58 \mathrm{~m}$.

II- Solution for Discharge Q.

$V \& f$ Are unknown then Darcy - Weisbach equation and moody diagram must be used simultaneously to find their values.
1- Givens

$$
\left\{\begin{array}{l}
\boldsymbol{f} d \\
f \text { value is assumed by inspection of the Moody diagram }
\end{array}\right.
$$

2- Substitution of this trail f into the Darcy - equation produce a trial value of \boldsymbol{V}.
3- From \boldsymbol{V} a trial $\boldsymbol{R e}$ is computed.
4- An improved value of \boldsymbol{f} is found from moody diagram with help of $\boldsymbol{R} \boldsymbol{e}$
5- When \boldsymbol{f} has been found correct the corresponding \boldsymbol{V} and \boldsymbol{Q} is determined by multiplying by the area.

Ex. 2

Water at $15 \mathrm{C}^{\circ}$ flow through a 300 mm diameter riveted steel pipe, $\in=3 \mathrm{~mm}$ with a head loss of 6 m in 300 m . Determine the flow rate in pipe.
Sol.
The relative roughness is $\boldsymbol{\epsilon} \boldsymbol{d}=0.003 / 0.3=0.01$, and from diagram a trial \boldsymbol{f} is taken as (0.038). By substituting into Darcy equation
$6=0.038 \frac{300}{0.3} \frac{V^{2}}{2(9.81)}$
$\therefore V=1.76 \frac{\mathrm{~m}}{\mathrm{~s}}$
At T $=15 \mathrm{C}^{\circ} \rightarrow \mathrm{v}=1.13 * 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
$\therefore R e=\frac{V d}{v}=\frac{1.715 * 0.3}{1.13 * 10^{-6}}=467278$
From the Moody diagram $f=0.038$ at $\left(\operatorname{Re} \quad \& \frac{\epsilon}{D}\right)$
And from Darcy $\rightarrow V_{a v}=\sqrt{\frac{h_{f} \cdot d .2 . g}{f \cdot L}}=\sqrt{\frac{6 * 0.3 * 2 * 9.81}{0.038 * 300}}=1.76 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\therefore Q=A V=\pi(0.15)^{2} \sqrt{\frac{(6 * 0.3)(2)(9.81)}{(0.038)(300)}}=0.1245 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

III- Solution for Diameter d.

Three unknown in Darcy-equation $\boldsymbol{f}, \boldsymbol{V}, \boldsymbol{d}$, two in the continuity equation $\boldsymbol{V}, \boldsymbol{d}$ and three in the $\boldsymbol{R e}$ number equation
To element the velocity in Darcy equation \& in the expression for $\boldsymbol{R} \boldsymbol{e}$, simplifies the problem as follows.
$h_{f}=f \frac{L}{d} \frac{Q^{2}}{2 g\left(\frac{d^{2} \pi}{4}\right)^{2}}$
Or $\quad d^{5}=\frac{8 L Q^{2}}{h_{f} g \pi^{2}} f=C_{1} f$
In which C_{1} is the known quantity $\frac{8 L Q^{2}}{h_{f} g \pi^{2}}$
From continuity $\quad V d^{2}=\frac{4 Q}{\pi}$
$R e=\frac{V d}{v}=\frac{4 Q}{\pi v} \frac{1}{d}=\frac{C_{2}}{d}$
C_{2} is the known quantity $\frac{4 Q}{\pi v}$ the solution is now effected by the following procedure
1- Assume the value of f.
2- Solve Eq. 4 for \boldsymbol{d}.

3- Solve Eq. 5 for Re.
4- Find the relative roughness ϵd d.
5- With R_{e} and $\boldsymbol{\epsilon} \boldsymbol{d}$, Look up new \boldsymbol{f} from a diagram.
6- Use the new f, and repeat the procedure.
7- When the value of \boldsymbol{f} does not change in the two significant steps, all equations are satisfied and the problem is solved.

Ex. 3

Determine the size of clean wrought-iron pipe required to convey 4000 gpm oil, $\mathrm{v}=0.0001 \frac{\mathrm{ft}}{} \mathrm{t}^{2}, 10000$ ft pipe length with a head loss of $75 \mathrm{ft} . \mathrm{lb} / \mathrm{lb}$.
Sol.
The discharge is $Q=\frac{4000}{448.4}=8.93 \mathrm{cfs}$
From Eq. $4, \quad d^{5}=\frac{8 L Q^{2}}{h_{f} g \pi^{2}} f=\frac{8 * 10000 * 8.93^{2}}{75 * 32.2 * \pi^{2}} f=\mathbf{2 6 7 . 6 5} \boldsymbol{f}$
And from Eq. 5,
$\operatorname{Re}=\frac{4 Q}{\pi v} \frac{1}{d}=\frac{4 * 8.93}{\pi * 0.0001} \frac{1}{d}=\frac{113700}{d}$
And from Table $1 \quad \in=0.00015 \mathrm{ft}$
If $f=0.02$ (assumed value), $\therefore \mathrm{d}=1.35 \mathrm{ft}$
$R e=81400$
$\epsilon d=0.00011 \quad$ from Moody chart $f=0.0191$
In repeating the procedure, $\mathrm{d}=1.37 \mathrm{ft} \rightarrow R e=82991 \rightarrow-\rightarrow f=0.019$ Therefore $d=1.382 * 12=16.6$ in

Figure (1): The Moody chart for pipe friction with smooth and rough walls.

Table 1: Recommended roughness values.

		ϵ		
Material	Condition	ft	mm	Uncertainty, \%
Steel	Sheet metal, new	0.00016	0.05	± 60
	Stainless, new	0.000007	0.002	± 50
	Commercial, new	0.00015	0.046	± 30
	Riveted	0.01	3.0	± 70
	Rusted	0.007	2.0	± 50
Iron	Cast, new	0.00085	0.26	± 50
	Wrought, new	0.00015	0.046	± 20
	Galvanized, new	0.0005	0.15	± 40
	Asphalted cast	0.0004	0.12	± 50
	Drawn, new	0.000007	0.002	± 50
Brass	Drawn tubing	0.000005	0.0015	± 60
Plastic	-	$S m o o t h$	$S m o o t h$	
Glass	Smoothed	0.00013	0.04	± 60
Concrete	Rough	0.007	2.0	± 50
	Rubber	Smoothed	0.000033	0.01
Wood	Stave	0.0016	0.5	± 60
			± 40	

