Lecture-Six

Applications of Viscous Turbulent Flow in Pipes

1- Application-1

A pump delivers water from a tank (A) (water surface elevation=110m) to tank B (water surface elevation $=170 \mathrm{~m}$). The suction pipe is 45 m long and 35 cm in diameter the delivered pipe is 950 m long 25 cm in diameter. Loss head due to friction $\boldsymbol{h}_{\boldsymbol{f} 1}=5 \mathrm{~m}$ and $\boldsymbol{h}_{f 2}=3 \mathrm{~m}$ If the piping are from
pipe (1) $=$ steel sheet metal
pipe (2)= stainless - steel
Calculate the following
i) The discharge in the pipeline
ii) The power delivered by the pump.

Sol.

Given
$v_{w}=1.007 * 10^{-6} \frac{\mathrm{~m}^{2}}{s}$
$d_{1}=35 \mathrm{~cm}=0.35 \mathrm{~m} ; d_{2}=25 \mathrm{~cm}=0.25 \mathrm{~m}$
$L_{1}=45 \mathrm{~m} ; L_{2}=950 \mathrm{~m}$
From table 1, $\epsilon_{1}=0.05 \mathrm{~mm}$
$\epsilon_{2}=0.002 \mathrm{~mm}$
$\frac{\epsilon_{1}}{d_{1}}=\frac{0.05}{350}=1.428 * 10^{-4}$
$\frac{\epsilon_{2}}{d_{2}}=\frac{0.002}{250}=8 * 10^{-6}$
Assume $f_{1}=0.013 ; f_{2}=0.008$
$h_{f 1}=f_{1} \frac{L_{1}}{d_{1}} \cdot \frac{V_{1}^{2}}{2 g}$
$5=0.013 \frac{45}{0.35} \cdot \frac{V_{1}^{2}}{2 * 9.81}-\longrightarrow V_{1}=7.66 \frac{\mathrm{~m}}{\mathrm{~s}} \longrightarrow R e_{1}=\frac{V d}{v}=\frac{7.66 * 0.35}{1.007 * 10^{-6}}$
$R e_{1}=2662363=2.66 * 10^{6}$
$h_{f 2}=f_{2} \frac{L_{2}}{d_{2}} \frac{V_{2}^{2}}{2 g}=0.008 \frac{950}{0.25} \cdot \frac{V_{2}^{2}}{2 * 9.81}=3.0 \mathrm{~m}$
$V_{2}=1.39 \frac{\mathrm{~m}}{\mathrm{~s}} \quad R e_{2}=\frac{1.39 * 0.25}{1.007 * 10^{-6}}=3.45 * 10^{5}$
$1^{\text {st }}$ Trail
$\left(R e_{1} \& \frac{\epsilon_{1}}{d_{1}}\right) \rightarrow \rightarrow f_{1}=0.0138 \quad$ from Fig. 1
$\left(\operatorname{Re}_{2} \& \frac{\epsilon_{2}}{d_{2}}\right) \rightarrow f_{2}=0.014 \quad$ from Fig. 1
$h_{f 1}=5=0.0138 \frac{45}{0.35} \cdot \frac{V_{1}^{2}}{2 * 9.81} \rightarrow V_{1}=7.435 \frac{\mathrm{~m}}{\mathrm{~s}}-\rightarrow \rightarrow R e_{1}=2.58 * 10^{6}$
$h_{f 2}=3=0.014 \frac{950}{0.25} \frac{V_{2}^{2}}{2 * 9.81} \longrightarrow V_{2}=1.051 \frac{\mathrm{~m}}{\mathrm{~s}} \longrightarrow \rightarrow R e_{2}=2.6 * 10^{5}$
$2^{\text {nd }}$ trial and from fig. 1
$\left(\operatorname{Re} e_{1} \& \frac{\epsilon_{1}}{d_{1}}\right) \quad f_{1}=0.0165, f_{2}=0.015$
From $f_{1} \& f_{2}$
$h_{f 1}=5=0.0165 \frac{45}{0.35} \frac{V_{1}^{2}}{2 * 9.81} \rightarrow V_{1}=6.8 \mathrm{~m} / \mathrm{s}$
$h_{f 2}=3=0.015 \frac{950}{0.25} \frac{V_{2}^{2}}{2 * 9.81} \rightarrow V_{2}=1.01 \mathrm{~m} / \mathrm{s}$
$\mathrm{Re}_{1}=2.36 * 10^{6}$
$\mathrm{Re}_{2}=2.52 * 10^{5}$
$3^{\text {rd }}$ trial
$\left(R e_{1} \& \frac{\epsilon_{1}}{d_{1}}\right),\left(\operatorname{Re} e_{2} \frac{\epsilon_{2}}{d_{2}}\right) \rightarrow f_{1}=0.0169, f_{2}=0.015$
From Darcy-equation gives $\mathrm{V}_{1}=0.6 .72 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{2}=1.016 \mathrm{~m} / \mathrm{s}$.
$\mathrm{Q}=\mathrm{A}_{1} * \mathrm{~V}_{1}=\mathbf{0 . 6 4 6 2} \mathrm{m}^{3} / \mathrm{s}$
From energy equation

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{2}+h_{f}
$$

$\frac{(6.72)^{2}}{2 * 9.81}+110+h_{p}=\frac{(1.016)^{2}}{2 * 9.81}+170+8 \quad$ Since $p_{I}=p_{2}$
$h_{p}=65.75 \mathrm{~m}$
$P=\gamma Q h_{p}=9810 * 0.6462 * 65.75=416.8 \mathrm{~kW}$ The power delivered by the pump.

2- Application-2

In a pipeline of diameter 350 mm and length 75 m , water is flowing at a velocity of $2.8 \mathrm{~m} / \mathrm{s}$. Find the head lost due to friction, using Darcy-Eq.\& Moody chart, pipe material is Steel-Riveted kinematic viscosity $\mathrm{v}=0.012$ stoke
Sol.
$h_{f}=f \frac{L}{d} \cdot \frac{V^{2}}{2 g} ; d=0.35 \mathrm{~m}, L=75 \mathrm{~m} ; V=2.8 \frac{\mathrm{~m}}{\mathrm{~s}}$
From table 1 for steel riveted $\in=3.0 \mathrm{~mm}$
$\frac{\epsilon}{d}=\frac{0.003}{0.35}=8.57 * 10^{-3}$
$1 \frac{m^{2}}{s}=10^{4}$ stoke $\therefore v=0.012 * 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
$R e \quad=\frac{V d}{v}=\frac{2.8 * 0.35}{0.012 * 10^{-4}}=816666=8.1 * 10^{5}$
at $\left(\operatorname{Re} \& \frac{\epsilon}{d}\right) \rightarrow f=0.0358$
$\therefore h_{f}=0.0358 \frac{75}{0.35} \frac{2.8^{2}}{2 * 9.81}=3.0 \mathrm{~m}$
By determine the value of f by Eq. 7.45. ref. [1]
$\frac{1}{f^{\frac{1}{2}}} \approx-1.8 \log \left[\frac{6.9}{R e_{d}}+\left(\frac{\frac{\epsilon}{d}}{3.7}\right)^{1.11}\right]$
$\frac{1}{f^{\frac{1}{2}}}=-1.8 \log \left(\frac{6.9}{8.16 * 10^{6}}+\left(\frac{8.57 * 10^{-3}}{3.7}\right)^{1.11}\right)=5.2646$
$f=0.036 \quad \Delta f=0.0002$

3- Application-3.

Oil having absolute viscosity $0.1 \mathrm{~Pa} . \mathrm{s}$ and relative density 0.85 flow through an iron pipe with diameter 305 mm and length 3048 m with flow rate $44.4 * 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$. Determine the head loss per unit weight in pipe.

Sol.

$V=\frac{Q}{A}=\frac{44.4 * 10^{-3}}{\frac{1}{4} \pi(0.305)^{2}}=0.61 \frac{\mathrm{~m}}{\mathrm{~S}}$
$R e=\frac{V d \rho}{\mu}=\frac{0.61 * 0.305 * 850}{0.1}=1580$
i.e the flow is laminar .
$f=\frac{64}{R_{e}}=\frac{64}{1580}=0.0407$
$\therefore h_{f}=f \frac{L}{d} \frac{V}{2 g}=0.0407 * \frac{3048}{0.305} * \frac{(0.61)^{2}}{2 g}=7.71 \mathrm{~m}$

Figure (1): The Moody chart for pipe friction with smooth and rough walls.

Table 1: Recommended roughness values.

		ϵ		
Material	Condition	ft	mm	Uncertainty, $\%$
Steel	Sheet metal, new	0.00016	0.05	± 60
	Stainless, new	0.000007	0.002	± 50
	Commercial, new	0.00015	0.046	± 30
	Riveted	0.01	3.0	± 70
	Rusted	0.007	2.0	± 50
Iron	Cast, new	0.00085	0.26	± 50
	Wrought, new	0.00015	0.046	± 20
	Galvanized, new	0.0005	0.15	± 40
	Asphalted cast	0.0004	0.12	± 50
	Drawn, new	0.000007	0.002	± 50
Brass	Drawn tubing	0.000005	0.0015	± 60
Plastic	-	$S m o o t h$	$S m o o t h$	
Glass	Smoothed	0.00013	0.04	± 60
Concrete	Rough	0.007	2.0	± 50
	Rubber	Smoothed	0.000033	0.01
Wood	Stave	0.0016	0.5	± 60
				± 40

