
ALGORITHMS -

1 April 2020 1

الخوارزميات للمرحلة الثانية قسم علوم الحاسبات

الدكتور
اثير العاني

TOPICS

Introduction

Definitions

Classification of Data Structures

Arrays and Linked Lists

Abstract Data Types [ADT]

 The List ADT

 Array-based Implementation

 Linked List Implementation

 Cursor-based Implementation

Doubly Linked Lists

1 April 2020 2

DATA STRUCTURE

Data Structure is a particular way of storing and organizing data in a computer so
that it can be used efficiently.

Different kinds of data structures are suited to different kinds of applications.

Storing and retrieving can be carried out on data stored in both main memory and
in secondary memory.

1 April 2020 3

Way in which data are stored for efficient search and retrieval.

The simplest data structure is the one-dimensional (linear) array.

Data items stored non-consecutively in memory may be linked by pointers.

Many algorithms have been developed for storing data efficiently

1 April 2020 4

ALGORITHMS

An algorithm is a step-by-step procedure for calculations.

An algorithm is an effective method expressed as a finite list of well-defined
instructions for calculating a function.

The transition from one state to the next is not necessarily deterministic; some
algorithms incorporate random input.

1 April 2020 5

Procedure that produces the answer to a question or the solution to a problem in a
finite number of steps.

An algorithm that produces a yes or no answer is called a decision procedure; one
that leads to a solution is a computation procedure.

Example: A mathematical formula and the instructions in a computer program

1 April 2020 6

DATA STRUCTURE CLASSIFICATION

Primitive / Non-primitive

 Basic Data Structures available / Derived from Primitive Data Structures

Homogeneous / Heterogeneous

 Elements are of the same type / Different types

Static / Dynamic

 memory is allocated at the time of compilation / run-time

Linear / Non-linear

 Maintain a Linear relationship between element

1 April 2020 7

ADT - GENERAL CONCEPT

Problem solving with a computer means processing data

To process data, we need to define the data type and the operation to be
performed on the data

The definition of the data type and the definition of the operation to be applied to
the data is part of the idea behind an Abstract Data Type (ADT)

1 April 2020 8

ADT - GENERAL CONCEPT

The user of an ADT needs only to know that a set of operations are available for
the data type, but does not need to know how they are applied

Several simple ADTs, such as integer, real, character, pointer and so on, have been
implemented and are available for use in most languages

1 April 2020 9

DATA TYPES

A data type is characterized by:

 A set of values

 A data representation, which is common to all these values, and

 A set of operations, which can be applied uniformly to all these values

1 April 2020 10

PRIMITIVE DATA TYPES

Languages like ‘C’ provides the following primitive data types:

 boolean

 char, byte, int

 float, double

Each primitive type has:

 A set of values

 A data representation

 A set of operations

1 April 2020 11

ADT DEFINITION

In computer science, an abstract data type (ADT) is a mathematical model for a
certain class of data structures that have similar behavior.

An abstract data type is defined indirectly, only by the operations that may be
performed on it and by mathematical constraints on the effects (and possibly cost)
of those operations.

1 April 2020 12

ADT DEFINITION

An ADT may be implemented by specific data types or data structures, in many
ways and in many programming languages; or described in a formal specification
language.

example, an abstract stack could be defined by three operations:

 push, that inserts some data item onto the structure,

 pop, that extracts an item from it, and

 peek, that allows data on top of the structure to be examined without removal.

1 April 2020 13

Abstract data types or ADTs are a mathematical specification of a set of data and
the set of operations that can be performed on the data.

They are abstract in the sense that the focus is on the definitions and the various
operations with their arguments.

The actual implementation is not defined, and does not affect the use of the ADT.

1 April 2020 14

ADT IN SIMPLE WORDS

Definition:

 Is a set of operation

 Mathematical abstraction

 No implementation detail

Example:

 Lists, sets, graphs, stacks are examples of ADT along with their operations

1 April 2020 15

WHY ADT?

Modularity

 divide program into small functions

 easy to debug and maintain

 easy to modify

 group work

Reuse

 do some operations only once

Easy to change the implementation

 transparent to the program

1 April 2020 16

IMPLEMENTING AN ADT

To implement an ADT, you need to choose:

 A data representation

 must be able to represent all necessary values of the ADT

 should be private

 An algorithm for each of the necessary operation:

 must be consistent with the chosen representation

 all auxiliary (helper) operations that are not in the contract should be private

Remember: Once other people are using it

 It’s easy to add functionality

1 April 2020 17

THE LIST ADT

The List is an

 Ordered sequence of data items called elements

 A1, A2, A3, …,AN is a list of size N

 size of an empty list is 0

 Ai+1 succeeds Ai

 Ai-1 preceeds Ai

 Position of Ai is i

 First element is A1 called “head”

 Last element is AN called “tail”

1 April 2020 18

OPERATIONS ON LISTS
MakeEmpty

PrintList

Find

FindKth

Insert

Delete

Next

Previous

1 April 2020 ANNA UNIVERSITY, CHENNAI - 600 025 19

LIST – AN EXAMPLE

The elements of a list are 34, 12, 52, 16, 12

 Find (52) -> 3

 Insert (20, 4) -> 34, 12, 52, 20, 16, 12

 Delete (52) -> 34, 12, 20, 16, 12

 FindKth (3) -> 20

1 April 2020 20

LIST - IMPLEMENTATION

Lists can be implemented using:

 Arrays

 Linked List

1 April 2020 21

ARRAYS

Array is a static data structure that represents a collection of fixed number of
homogeneous data items or

A fixed-size indexed sequence of elements, all of the same type.

The individual elements are typically stored in consecutive memory locations.

The length of the array is determined when the array is created, and cannot be
changed.

1 April 2020 22

ARRAYS

Any component of the array can be inspected or updated by using its index.

 This is an efficient operation

 O(1) = constant time

The array indices may be integers (C, Java) or other discrete data types (Pascal,
Ada).

The lower bound may be zero (C, Java), one (Fortran), or chosen by the
programmer (Pascal, Ada)

1 April 2020 23

DIFFERENT TYPES OF ARRAYS

One-dimensional array: only one index is used

Multi-dimensional array: array involving more than one index

Static array: the compiler determines how memory will be allocated for the array

Dynamic array: memory allocation takes place during execution

1 April 2020 24

ONE DIMENSIONAL STATIC ARRAY

Syntax:
 ElementType arrayName [CAPACITY];

 ElementType arrayName [CAPACITY] = { initializer_list };

Example in C++:
 int b [5];

 int b [5] = {19, 68, 12, 45, 72};

1 April 2020 25

ARRAY OUTPUT FUNCTION

void display(int array[],int num_values)

{

for (int I = 0; i<num_values; i++)

cout<< array[i] << “ ”;

}

1 April 2020 26

LIST IMPLEMENTED USING ARRAY

1 April 2020 27

OPERATIONS ON LISTS

We’ll consider only few operations and not all operations on Lists

Let us consider Insert

There are two possibilities:

 Ordered List

 Unordered List

1 April 2020 28

INSERTION INTO AN ORDERED LIST

1 April 2020 29

INSERTION IN DETAIL

1 April 2020 30

FIND / SEARCH

Searching is the process of looking for a specific

element in an array

For example, discovering whether a certain score is

included in a list of scores.

Searching, like sorting, is a common task in computer

programming.

There are many algorithms and data structures devoted

to searching.

The most common one is the linear search.

1 April 2020 31

LINEAR SEARCH

The linear search approach compares the given value

with each element in the array.

The method continues to do so until the given value

matches an element in the list or the list is exhausted

without a match being found.

If a match is made, the linear search returns the index

of the element in the array that matches the key.

If no match is found, the search returns -1.

1 April 2020 32

LINEAR SEARCH

1 April 2020 33

LINEAR SEARCH FUNCTION
int LinearSearch (int a[], int n, int key)

{

int i;

for(i=0; i<n; i++)

{

if (a[i] == key)

return i;

}

return -1;

}

1 April 2020 34

USING THE FUNCTION

LinearSearch (a,n,item,loc)

Here "a" is an array of the size n.

This algorithm finds the location of the element "item" in the array "a".

If search item is found, it sets loc to the index of the element; otherwise, it sets
loc to -1

index=linearsearch(array, num, key)

1 April 2020 35

PRINTLIST OPERATION

int myArray [5] = {19,68,12,45,72};

/* To print all the elements of the array

for (int i=0;i<5;i++)

{

printf("%d", myArray[i]);

}

1 April 2020 36

1 April 2020 37

IMPLEMENTING DELETION

1 April 2020 ANNA UNIVERSITY, CHENNAI - 600 025 38

OPERATİONS RUNNİNG TİMES
PrintList O(N)

Find

Insert O(N) (on avarage half

Delete needs to be moved)

FindKth

Next O(1)

Previous

1 April 2020 39

DISADVANTAGES OF USING ARRAYS

Need to define a size for array

 High overestimate (waste of space)

insertion and deletion is very slow

 need to move elements of the list

redundant memory space

 it is difficult to estimate the size of array

1 April 2020 40

LINKED LIST

Series of nodes

 not adjacent in memory

 contain the element and a pointer to a node containing its succesor

Avoids the linear cost of insertion and deletion!

1 April 2020 41

SINGLY LINKED LIST

1 April 2020 42

DOUBLY LINKED LIST

1 April 2020 43

SINGLY LINKED LIST

1 April 2020 44

SINGLY-LINKED LIST - ADDITION

Insertion into a singly-linked list has two special cases.

It's insertion a new node before the head (to the very beginning of the list) and
after the tail (to the very end of the list).

In any other case, new node is inserted in the middle of the list and so, has a
predecessor and successor in the list.

1 April 2020 45

EMPTY LIST CASE

When list is empty, which is indicated by
(head == NULL) condition, the insertion is
quite simple.

Algorithm sets both head and tail to
point to the new node.

1 April 2020 46

ADD FIRST

In this case, new node is inserted right before the current head node.

1 April 2020 47

ADD FIRST - STEP 1

It can be done in two steps:

 Update the next link of the new node, to point to the current head node.

1 April 2020 48

ADD FIRST - STEP 2

 Update head link to point to the new node.

1 April 2020 49

1 April 2020 50

ADD LAST

In this case, new node is inserted right after the current tail node.

It can be done in two steps:

 Update the next link of the current tail node, to point to the new node.

 Update tail link to point to the new node.

1 April 2020 51

1 April 2020 52

INSERT - GENERAL CASE

In general case, new node is always inserted between two nodes,
which are already in the list. Head and tail links are not updated in
this case.

We need to know two nodes "Previous" and "Next", between which
we want to insert the new node.

This also can be done in two steps:

 Update link of the "previous" node, to point to the new node.

 Update link of the new node, to point to the "next" node.

1 April 2020 53

1 April 2020 54

SINGLY-LINKED LIST - DELETION

There are four cases, which can occur while removing the node.

We have the same four situations, but the order of algorithm actions is opposite.

Notice, that removal algorithm includes the disposal of the deleted node -
unnecessary in languages with automatic garbage collection (Java).

1 April 2020 55

LIST HAS ONLY ONE NODE

When list has only one node, that the
head points to the same node as the
tail, the removal is quite simple.

Algorithm disposes the node, pointed
by head (or tail) and sets both head
and tail to NULL.

1 April 2020 56

REMOVE FIRST

In this case, first node (current head node) is removed from the list.

It can be done in two steps:

 Update head link to point to the node, next to the head.

 Dispose removed node.

1 April 2020 57

1 April 2020 58

REMOVE LAST

In this case, last node (current tail node) is removed from the list. This operation is a
bit more tricky, than removing the first node, because algorithm should find a node,
which is previous to the tail first.

It can be done in three steps:

 Update tail link to point to the node, before the tail. In order to find it, list should be traversed first,
beginning from the head.

 Set next link of the new tail to NULL.

 Dispose removed node.

1 April 2020 59

1 April 2020 60

REMOVE - GENERAL CASE

In general case, node to be removed is always located between two list nodes.
Head and tail links are not updated in this case.

We need to know two nodes "Previous" and "Next", of the node which we want to
delete.

Such a removal can be done in two steps:

 Update next link of the previous node, to point to the next node, relative to the removed node.

 Dispose removed node.

1 April 2020 61

1 April 2020 62

ADVANTAGES OF USING LINKED LISTS

Need to know where the first node is

 the rest of the nodes can be accessed

No need to move the elements in the list for insertion and deletion
operations

No memory waste

1 April 2020 63

ARRAYS - PROS AND CONS

Pros

 Directly supported by C

 Provides random access

Cons

 Size determined at compile time

 Inserting and deleting elements is time consuming

1 April 2020 64

LINKED LISTS - PROS AND CONS

Pros

 Size determined during runtime

 Inserting and deleting elements is quick

Cons

 No random access

 User must provide programming support

1 April 2020 65

APPLICATION OF LISTS
Lists can be used

To store the records sequentially

For creation of stacks and queues

For polynomial handling

To maintain the sequence of operations for do / undo in software

To keep track of the history of web sites visited

1 April 2020 66

WHY DOUBLY LINKED LIST ?

Given only the pointer location, we cannot access its predecessor in
the list.

Another task that is difficult to perform on a linear linked list is
traversing the list in reverse.

Doubly linked list, a linked list in which each node is linked to both its
successor and its predecessor.

In such a case, where we need to access the node that precedes a
given node, a doubly linked list is useful.

1 April 2020 67

DOUBLY LINKED LIST

In a doubly linked list, the nodes are linked in both directions. Each node of a
doubly linked list contains three parts:

 Info: the data stored in the node

 Next: the pointer to the following node

 Back: the pointer to the preceding node

1 April 2020 68

OPERATIONS ON DOUBLY LINKED LISTS

The algorithms for the insertion and deletion operations on a doubly linked list are
somewhat more complicated than the corresponding operations on a singly linked
list.

The reason is clear: There are more pointers to keep track of in a doubly linked list.

1 April 2020 69

INSERTING ITEM

As an example, consider the Inserting an item.

To link the new node, after a given node, in a singly linked list, we need to change
two pointers:

 newNode->next and

 location->next.

The same operation on a doubly linked list requires four pointer changes.

1 April 2020 70

SINGLY LINKED LIST INSERTION

1 April 2020 71

DOUBLY LINKED LIST INSERTION

1 April 2020 72

THE ORDER IS IMPORTANT

1 April 2020 73

DOUBLY LINKED LIST - DELETION

One useful feature of a doubly linked list is its elimination of the need for a pointer
to a node's predecessor to delete the node.

Through the back member, we can alter the next member of the preceding node to
make it jump over the unwanted node.

Then we make the back pointer of the succeeding node point to the preceding node.

1 April 2020 74

DOUBLY LINKED LIST - DELETION

1 April 2020 75

