Trees (3)

Insert Node

and Delete Node
OsSA
i

T ——

Insert Node

. Given a sorted list:

589 13 21 44 45 46

Insert Node

Given a sorted list:
58 9 13 21 44 45 46

If 14 is inserted, the list become:

589 13 14 21 44 45 46

Insert Node

Given a sorted list:

589 13 21 44 45 46

If 14 i1s inserted, the list become:

589 13 14 21 44 45 46

Insert Node

Given a sorted list:

58 9 13 21 44 45 46
If 14 is inserted, the list become:
589 13 14 21 44 45 46

FEATURES OF ASORTED LIST IS PRESERVED

Insert Node

Given a sorted list:
58 9 13 21 44 45 46

If 14 is inserted, the list become:
589 13 14 21 44 45 46

FEATURES OF ASORTED LIST IS PRESERVED
WHAT ARE THE FEATURES OF ASORTED LIST??77??

Insert Node

Given a BST:

Insert Node

Given a BST:

Insert Node

Given a BST: ‘

If 14 to be Iinserted :

Insert Node

Given a BST:

If 14 to be Iinserted :

How does the new BST look like ?

Insert Node

Given a BST:

If 14 to be Iinserted :

How does the new BST look like ?
How do you do it?

Insert Node

Given a BST:

Are the features of a BST preserved???

Algorithm to insert 14:

Insert Node

Algorithm to insert 14:

Insert Node
14 < 647 —~

_,‘

Algorithm to insert 14:

Insert Node

Algorithm to insert 14:

Insert Node

10 88
@ ‘\

14 < 337

Algorithm to insert 14:

Insert Node

Algorithm to insert 14:

Insert Node

é Insert here

Algorithm to insert 14:

Insert Node

Try insert 99:

Insert Node

Try insert 99:

Insert Node

_,‘

Try insert 99:

Insert Node

10 “\\/99<88?.
® O 99

Try insert 99:

Insert Node

97

Insert Node

This insert algorithm is
not very effective

Try building a BST using the
Same algorithm for the following
Sequence:

KNGICU

Insert Node

This insert algorithm is
not very effective

Try building a BST using the
Same algorithm for the following
Sequence:

KNGICU

KUCING

Insert Node

This insert algorithm is
not very effective

Try building a BST using the
Same algorithm for the following
Sequence:

OXX
OCZz

G 1 E
CIN
I N

cCOC

I
I
K

Delete Node

3 cases node deletion :
* The node to be deleted 1s a leaf

* The node to be deleted has 1 child
* The node to be deleted has 2 children

Delete Node: First Case

To delete D:

Delete Node: First Case

To delete D:

Delete Node: First Case

To delete D:

. parent E ®

Delete Node: First Case

To delete D

. parent E ®

Delete Node: First Case

To delete D ‘
. parent ‘ ‘
B ® O
EOE X
A D ® ©O

Delete Node: First Case

To delete D

parent = G
B ® O

X

T

Set the right child of parent as null

RS T ey . e

Delete Node: First Case

parent

Free x

To delete D

X

T

Set the right child of parent as null

T

Delete Node: First Case

To delete D ‘
. parent ‘ ‘
B ® O
A ® O
Set the right child of parent as null
Free x

Delete Node: Second Case

To delete E

Delete Node: Second Case

To delete E ‘

Delete Node: Second Case
Qarent
To delete E

v
o

Delete Node: Second Case

parent
To delete E M
X /\
= s & B
B ® ©
A D ® ©O
Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

T T A N T

Delete Node: Second Case

parent
To delete E M
X /\
= s & B
B ® ©
A D ® ©O
Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

T T A N T

Delete Node: Second Case

parent
To delete E M
X /\
= 5 =
B ® O
A D ® ©
Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Free X

e e

Delete Node: Second Case

parent
To delete E ®
= o =
B ® O
A D ® ©O
Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Free X

e e

Delete Node: Second Case
Qarent

To delete E M
B P -

® e o O
® O

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of pare
Free x

| >4

nt

e e

Delete Node: Third Case

To delete P ‘

Delete Node: Third Case

parent
™M
To delete P
o
® ®
B ® O

Delete Node: Third Case
Qarent

To delete P ‘

Determine the next S

node based on
Inorder(LNR) ® ®
B ® O

Delete Node: Third Case
Qarent

To delete P ‘

o
.Determine the next E P .

node based on

Inorder(LNR) B N V2
A D IQ @

y

<

e parent of

Delete Node: Third Case

parent
To delete P ‘
o
. Lol E P .
parent of y
B ® O
A D J/ © 60
y

Delete Node: Third Case
Qarent

To delete P ‘

_ @
i 0Py ® ©

X->data = y->data

® ® J/O @

y

<

e parent of

Delete Node: Third Case

parent
To delete P M
i % =
M x->data=y->data @ ™
parent of y
B ® O
A D J/ @ O
y

Delete Node: Third Case

A D @ O
AN
yj A

parent
To delete P M
Copy -
x->data = y->data @ .y
A= parent of y
B ® O

T T T R T

Delete Node: Third Case

parent
To delete P M
. Delete T E D .
parent of y
B ® O

A D @ O
N
yj s

RS S P Ty - MR e s

Delete Node: Third Case

parent
To delete P M
%te T (asin case 1) .
nt_y->Lchild = NULL @ @D
® P ® _~ bparent of y
A D J/ @ O
y

Delete Node: Third Case

parent
To delete P M
. Delete T
E @™
_~ bparent of y
B ® O

