Trees (3)

Insert Node

 and Delete Nodeالدكتور
العاني

Insert Node

Given a sorted list:

5891321444546

Insert Node

Given a sorted list:

$$
5891321444546
$$

If 14 is inserted, the list become:

$$
58913 \underline{14} 21444546
$$

Insert Node

Given a sorted list:

$$
5891321444546
$$

If $\underline{14}$ is inserted, the list become:

$$
589131421444546
$$

Insert Node

Given a sorted list:

$$
\begin{array}{llllllll}
5 & 8 & 9 & 13 & 21 & 44 & 45 & 46
\end{array}
$$

If 14 is inserted, the list become:

$$
\begin{array}{llllllll}
5 & 8 & 9 & 13 & 14 & 21 & 44 & 45 \\
46
\end{array}
$$

FEATURES OF A SORTED LIST IS PRESERVED

Insert Node

Given a sorted list:

$$
\begin{array}{llllllll}
5 & 8 & 9 & 13 & 21 & 44 & 45 & 46
\end{array}
$$

If 14 is inserted, the list become:

$$
\begin{array}{lllllllll}
5 & 8 & 9 & 13 & 14 & 21 & 44 & 45 & 46
\end{array}
$$

FEATURES OF A SORTED LIST IS PRESERVED WHAT ARE THE FEATURES OF A SORTED LIST????

Insert Node

Given a BST:

Insert Node

Given a BST:

Insert Node

Given a BST:

If $\mathbf{1 4}$ to be inserted :

Insert Node

Given a BST:

If $\mathbf{1 4}$ to be inserted :
How does the new BST look like?

Insert Node

Given a BST:

If 14 to be inserted :

How does the new BST look like?
How do you do it?

Insert Node

Given a BST:

Are the features of a BST preserved???

Algorithm to insert 14:

Insert Node

Algorithm to insert 14:

Insert Node

14 < 64 ?

Algorithm to insert 14:

Insert Node

Algorithm to insert 14:

Insert Node

14 < 33 ?

Algorithm to insert 14:

Insert Node

Algorithm to insert 14:

Insert Node

Algorithm to insert 14:

Insert Node

Try insert 99:

Insert Node

Try insert 99:

Try insert 99:

Insert Node

Try insert 99:

Insert Node

Insert Node

This insert algorithm is not very effective

Try building a BST using the
Same algorithm for the following
Sequence:
K NGIC U

Insert Node

This insert algorithm is not very effective

Try building a BST using the Same algorithm for the following Sequence:

K NGICU

K U CIN G

Insert Node

This insert algorithm is not very effective

Try building a BST using the
Same algorithm for the following
Sequence:
K N G I C U
K U C I N G
C GIKNU

Delete Node

3 cases node deletion :

- The node to be deleted is a leaf
- The node to be deleted has 1 child
- The node to be deleted has 2 children

Delete Node: First Case

To delete D :

Delete Node: First Case

To delete D :

Delete Node: First Case

To delete D :

parent

Delete Node: First Case

To delete D

Delete Node: First Case

To delete D

parent

Set the right child of parent as null

Delete Node: First Case

To delete D
parent

Set the right child of parent as null

Delete Node: First Case

To delete D
parent

Set the right child of parent as null
Free x

Delete Node: First Case

To delete D

parent

Set the right child of parent as null
Free x

Delete Node: Second Case

To delete \mathbf{E}

Delete Node: Second Case

To delete \mathbf{E}

Delete Node: Second Case
 parent

To delete \mathbf{E}

Delete Node: Second Case parent

To delete \mathbf{E}

Set the Lchild (@ Rchild) of \mathbf{x} as the Lchild (@ Rchild) of parent

Delete Node: Second Case parent

To delete \mathbf{E}

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Delete Node: Second Case parent

To delete \mathbf{E}

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent Free x

Delete Node: Second Case parent

To delete \mathbf{E}

Set the Lchild (@ Rchild) of \mathbf{x} as the Lchild (@ Rchild) of parent Free x

Delete Node: Second Case parent

To delete \mathbf{E}

Set the Lchild (@ Rchild) of \mathbf{x} as the Lchild (@ Rchild) of parent Free x

Delete Node: Third Case

To delete \mathbf{P}

Delete Node: Third Case parent

To delete \mathbf{P}

Delete Node: Third Case parent

To delete \mathbf{P}
Determine the next node based on Inorder(LNR)

*Usually, the Inorder node has only one child or no children at all

Delete Node: Third Case parent

To delete \mathbf{P}

Determine the next node based on Inorder(LNR)

Delete Node: Third Case

 parentTo delete \mathbf{P}

Copy

Delete Node: Third Case

 parentTo delete \mathbf{P}

Topy
$\mathbf{x}->$ data $=y->$ data

parent of y

Delete Node: Third Case parent

To delete \mathbf{P}

Copy

$$
x->\text { data }=y->\text { data }
$$

Delete Node: Third Case parent

To delete \mathbf{P}
Copy

$$
\begin{aligned}
& x->\text { data }=y->\text { data } \\
& x=y
\end{aligned}
$$

Delete Node: Third Case parent

To delete \mathbf{P}

Delete T

Delete Node: Third Case parent

To delete \mathbf{P}
Delete \mathbf{T} (as in case 1) parent_y->Lchild = NULL

Delete Node: Third Case parent

To delete \mathbf{P}

Delete T

