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FEATURES OF A SORTED LIST IS PRESERVED

Given a sorted list:

If 14 is inserted, the list become:
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How do you do it?

Given a BST:
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Insert Node

This insert algorithm is 

not very effective

Try building a BST using the

Same algorithm for the following 

Sequence:

K  N  G  I  C  U

K  U  C  I  N  G

C  G  I  K  N  U



Delete Node

• The node to be deleted is a leaf

• The node to be deleted has 1 child

• The node to be deleted has 2 children

3 cases node deletion :
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*Usually, the Inorder node has only one child or no 

children at all
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