Trees (3)
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Given a sorted list:
58 9 13 21 44 45 46

If 14 is inserted, the list become:
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FEATURES OF ASORTED LIST IS PRESERVED
WHAT ARE THE FEATURES OF ASORTED LIST??77??
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Given a BST:

If 14 to be Iinserted :

How does the new BST look like ?
How do you do it?
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Given a BST:

Are the features of a BST preserved???
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This insert algorithm is
not very effective

Try building a BST using the
Same algorithm for the following
Sequence:
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Delete Node

3 cases node deletion :
* The node to be deleted 1s a leaf

* The node to be deleted has 1 child
* The node to be deleted has 2 children
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