
Trees (3)

Insert Node

and Delete Node

Insert Node

Given a sorted list:

5 8 9 13 21 44 45 46

Insert Node

Given a sorted list:

5 8 9 13 21 44 45 46

If 14 is inserted, the list become:

5 8 9 13 14 21 44 45 46

Insert Node

5 8 9 13 21 44 45 46

5 8 9 13 14 21 44 45 46

Given a sorted list:

If 14 is inserted, the list become:

Insert Node

5 8 9 13 21 44 45 46

5 8 9 13 14 21 44 45 46

FEATURES OF A SORTED LIST IS PRESERVED

Given a sorted list:

If 14 is inserted, the list become:

Insert Node

5 8 9 13 21 44 45 46

5 8 9 13 14 21 44 45 46

WHAT ARE THE FEATURES OF A SORTED LIST????

FEATURES OF A SORTED LIST IS PRESERVED

Given a sorted list:

If 14 is inserted, the list become:

Insert Node

Given a BST:

Insert Node

64

10

33

88

7 99

Given a BST:

Insert Node

64

10

33

88

7 99

If 14 to be inserted :

Given a BST:

Insert Node

64

10

33

88

7 99

Given a BST:

If 14 to be inserted :

How does the new BST look like ?

Insert Node

64

10

33

88

7 99

How does the new BST look like ?

How do you do it?

Given a BST:

If 14 to be inserted :

Insert Node

64

10

33

88

7 99

14

Are the features of a BST preserved???

Given a BST:

Insert Node

Algorithm to insert 14:

64

10

33

88

7 99

Insert Node

64

10

33

88

7 99

14 < 64?

Algorithm to insert 14:

Insert Node

64

10

33

88

7 99

14 < 10?

Algorithm to insert 14:

Insert Node

64

10

33

88

7 99

14 < 33?

Algorithm to insert 14:

Insert Node

64

10

33

88

7 99

NULL

Algorithm to insert 14:

Insert Node

64

10

33

88

7 99

Insert here

14

Algorithm to insert 14:

Insert Node

64

10

33

88

7 99

14

Algorithm to insert 14:

Insert Node

Try insert 99:

64

10

33

88

7 99

14

Insert Node

64

10

33

88

7 99

14

99 < 64?

Try insert 99:

Insert Node

64

10

33

88

7 99

14

99 < 88?

Try insert 99:

Insert Node

64

10

33

88

7 99

14

99 < 99?

Try insert 99:

Insert Node

This insert algorithm is

not very effective

Try building a BST using the

Same algorithm for the following

Sequence:

K N G I C U

Insert Node

This insert algorithm is

not very effective

Try building a BST using the

Same algorithm for the following

Sequence:

K N G I C U

K U C I N G

Insert Node

This insert algorithm is

not very effective

Try building a BST using the

Same algorithm for the following

Sequence:

K N G I C U

K U C I N G

C G I K N U

Delete Node

• The node to be deleted is a leaf

• The node to be deleted has 1 child

• The node to be deleted has 2 children

3 cases node deletion :

Delete Node: First Case

M

E

D

P

B VN

T ZA

To delete D:

M

E

D

P

B VN

T ZA

To delete D:

Delete Node: First Case

M

E

D

P

B VN

T ZA

To delete D:

parent

Delete Node: First Case

M

E

D

P

B VN

T ZA

To delete D

parent

x

Delete Node: First Case

M

E

D

P

B VN

T ZA

To delete D

parent

Set the right child of parent as null

x

Delete Node: First Case

M

E

D

P

B VN

T ZA

To delete D

parent

x

Delete Node: First Case

Set the right child of parent as null

M

E

D

P

B VN

T ZA

To delete D

parent

Free x

x

Delete Node: First Case

Set the right child of parent as null

M

E P

B VN

T ZA

To delete D

parent

Set the right child of parent as null

Free x

Delete Node: First Case

M

E P

B VN

T ZA

To delete E

D

Delete Node: Second Case

Delete Node: Second Case

M

E P

B VN

T ZA

To delete E

D

Delete Node: Second Case

M

E P

B VN

T ZA

To delete E

D

x

parent

Delete Node: Second Case

M

E P

B VN

T ZA

To delete E

D

x

parent

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Delete Node: Second Case

M

E P

B VN

T ZA

To delete E

D

x

parent

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Delete Node: Second Case

M

E P

B VN

T ZA

To delete E

D

x

parent

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Free x

Delete Node: Second Case

M

P

B VN

T ZA

To delete E

D

parent

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Free x

Delete Node: Second Case

M

P
B

VN

T Z

A

To delete E

D

parent

Set the Lchild (@ Rchild) of x as the Lchild (@ Rchild) of parent

Free x

Delete Node: Third Case

M

E P

B VN

T ZA D

To delete P

Delete Node: Third Case

M

E P

B VN

T ZA D

To delete P

parent

x

Delete Node: Third Case

M

E P

B VN

T ZA D

To delete P

Determine the next

node based on

Inorder(LNR)

parent

x

*Usually, the Inorder node has only one child or no

children at all

Delete Node: Third Case

M

E P

B VN

T ZA D

To delete P

Determine the next

node based on

Inorder(LNR)

parent

x

y

parent of y

Delete Node: Third Case

M

E P

B VN

T ZA D

To delete P

Copy

parent

x

y

parent of y

Delete Node: Third Case

M

E P

B VN

T ZA D

To delete P

Copy

x->data = y->data

parent

x

y

parent of y

Delete Node: Third Case

M

E T

B VN

T ZA D

To delete P

parent

x

y

Copy

x->data = y->data

parent of y

Delete Node: Third Case

M

E T

B VN

T ZA D

To delete P

parent

xy

Copy

x->data = y->data

x = y parent of y

Delete Node: Third Case

M

E T

B VN

T ZA D

To delete P

Delete T

parent

y x

parent of y

Delete Node: Third Case

M

E T

B VN

T ZA D

To delete P

Delete T (as in case 1)

parent_y->Lchild = NULL

parent

y

parent of y

Delete Node: Third Case

M

E T

B VN

ZA D

To delete P

Delete T

parent

parent of y

