
B+-Trees

Same structure as B-trees.

Dictionary pairs are in leaves only. Leaves 
form a doubly-linked list.

Remaining nodes have following structure:

j a0 k1 a1 k2 a2 …kj aj

• j = number of keys in node.

• ai is a pointer to a subtree.

• ki <= smallest key in subtree ai and > largest 

in ai-1.



Example B+-tree
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 index node
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B+-tree—Search 
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key = 5

6 <= key <= 20



B+-tree—Insert 
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Insert
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• Insert a pair with key = 2.

• New pair goes into a 3-node.
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Insert Into A 3-node
 Insert new pair so that the keys are in ascending order.

• Split into two nodes.
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• Insert smallest key in new node and pointer 

to this new node into parent.
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9

5

5   6 30   4016   17

2

• Insert an index entry 2 plus a pointer into parent.
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Insert

• Now, insert a pair with key = 18.
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Insert

• Now, insert a pair with key = 18.
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• Insert an index entry17 plus a pointer into parent.



Insert

• Now, insert a pair with key = 18.
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• Insert an index entry17 plus a pointer into parent.
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Insert

• Now, insert a pair with key = 7.
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Delete

• Delete pair with key = 16.
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• Note: delete pair is always in a leaf.



Delete

• Delete pair with key = 16.
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• Note: delete pair is always in a leaf.
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Delete

• Delete pair with key = 1.
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• Get >= 1 from sibling and update parent key.



Delete

• Delete pair with key = 1.
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• Get >= 1 from sibling and update parent key.
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Delete

• Delete pair with key = 2.
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• Merge with sibling, delete in-between key in parent.
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Delete

• Delete pair with key = 3.
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•Get >= 1 from sibling and update parent key.
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Delete

• Delete pair with key = 9.
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• Merge with sibling, delete in-between key in parent.
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Delete
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Delete

• Delete pair with key = 6.
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• Merge with sibling, delete in-between key in parent.
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Delete

• Index node becomes deficient.
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•Get >= 1 from sibling, move last one to parent, get 

parent key.



Delete

• Delete 9.
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• Merge with sibling, delete in-between key in parent.
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Delete

•Index node becomes deficient.
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• Merge with sibling and in-between key in parent.



Delete

•Index node becomes deficient.
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• It’s the root; discard.
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B*-Trees

 Root has between 2 and 2 * floor((2m – 2)/3) + 1 children.

 Remaining nodes have between ceil((2m – 1)/3) and m children.

 All external/failure nodes are on the same level.



Insert

 When insert node is overfull, check adjacent sibling.

 If adjacent sibling is not full, move a dictionary pair from overfull node, 

via parent, to nonfull adjacent sibling.

 If adjacent sibling is full, split overfull node, adjacent full node, and in-

between pair from parent to get three nodes with floor((2m – 2)/3),

floor((2m – 1)/3), floor(2m/3) pairs plus two additional pairs for insertion 

into parent.



Delete

 When combining, must combine 3 adjacent nodes and 2 in-
between pairs from parent.

 Total # pairs involved = 2 * floor((2m-2)/3) + [floor((2m-2)/3) – 1] + 2.

 Equals 3 * floor((2m-2)/3) + 1.

 Combining yields 2 nodes and a pair that is to be inserted into 
the parent.

 m mod 3 = 0 => nodes have m – 1 pairs each.

 m mod 3 = 1 => one node has m – 1 pairs and the other has m – 2.

 m mod 3 = 2 => nodes have m – 2 pairs each.


