

B⁺-Trees

Same structure as B-trees.

- Dictionary pairs are in leaves only. Leaves form a doubly-linked list.
- Remaining nodes have following structure:

 $\mathbf{j} \mathbf{a}_0 \mathbf{k}_1 \mathbf{a}_1 \mathbf{k}_2 \mathbf{a}_2 \dots \mathbf{k}_{\mathbf{j}} \mathbf{a}_{\mathbf{j}}$

- $\frac{1}{j}$ = number of keys in node.
- a_i is a pointer to a subtree.
- $k_i \le smallest key in subtree a_i and > largest in a_{i-1}$.

Insert

- Insert a pair with key = 2.
- New pair goes into a 3-node.

Insert Into A 3-node

Insert new pair so that the keys are in ascending order.

• Split into two nodes.

• Insert smallest key in new node and pointer to this new node into parent.

Insert an index entry 2 plus a pointer into parent.

Now, insert a pair with key = 18.

Now, insert a pair with key = 18.

Insert an index entry17 plus a pointer into parent.

Delete pair with key = 16. Note: delete pair is always in a leaf.

Delete pair with key = 16. Note: delete pair is always in a leaf.

• Get >= 1 from sibling and update parent key.

• Get >= 1 from sibling and update parent key.

• Merge with sibling, delete in-between key in parent.

•Get >= 1 from sibling and update parent key.

Delete pair with key = 9.

• Merge with sibling, delete in-between key in parent.

Delete pair with key = 6.

• Merge with sibling, delete in-between key in parent.

Merge with sibling, delete in-between key in parent.

Index node becomes deficient.

It's the root; discard.

Root has between 2 and 2 * floor((2m - 2)/3) + 1 children.

Remaining nodes have between ceil((2m - 1)/3) and m children.

All external/failure nodes are on the same level.

Insert

- When insert node is overfull, check adjacent sibling.
- If adjacent sibling is not full, move a dictionary pair from overfull node, via parent, to nonfull adjacent sibling.
- If adjacent sibling is full, split overfull node, adjacent full node, and inbetween pair from parent to get three nodes with floor((2m - 2)/3),

floor((2m - 1)/3), floor(2m/3) pairs plus two additional pairs for insertion into parent.

Delete

 When combining, must combine 3 adjacent nodes and 2 inbetween pairs from parent.

- Total # pairs involved = 2 * floor((2m-2)/3) + [floor((2m-2)/3) 1] + 2
- Equals 3 * floor((2m-2)/3) + 1.
- Combining yields 2 nodes and a pair that is to be inserted into the parent.
 - $m \mod 3 = 0 =>$ nodes have m 1 pairs each.
 - $m \mod 3 = 1 =>$ one node has m 1 pairs and the other has m = 2
 - m mod 3 = 2 => nodes have m 2 pairs each.