B^{+}-Trees

- Same structure as B-trees.
- Dictionary pairs are in leaves only. Leaves form a doubly-linked list.
- Remaining nodes have following structure:

$$
\mathrm{ja}_{0} \mathrm{k}_{1} \mathrm{a}_{1} \mathrm{k}_{2} \mathrm{a}_{2} \ldots \mathrm{k}_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}
$$

$j=$ number of keys in node.
a_{i} is a pointer to a subtree.
$\mathrm{k}_{\mathrm{i}}<=$ smallest key in subtree a_{i} and $>$ largest
in a_{i-1}.

Example B+-tree

B+-tree-Search

$k e y=5$
d $<$ key <=20

B+-tree-lnsert

Insert 10

Insert

- Insert a pair with key $=2$.
- New pair goes into a 3-node.

Insert Into A 3-node

sert new pair so that the keys are in ascending order.

- Split into two nodes.

- Insert smallest key in new node and pointer to this new node into parent.

Insert

Insert an index entry 2 plus a pointer into parent.

Insert

Now, insert a pair with key $=18$.

Insert

Now, insert a pair with key $=18$.
Insert an index entry 17 plus a pointer into parent.

Insert

Now, insert a pair with key $=18$.
Insert an index entry 17 plus a pointer into parent.

Insert

Now, insert a pair with key $=7$.

Delete

Delete pair with key $=16$.
Note: delete pair is always in a leaf.

Delete

Delete pair with key $=16$.
Note: delete pair is always in a leaf.

Delete

- Get $>=1$ from sibling and update parent key.

Delete

- Get >= 1 from sibling and update parent key.

Delete

- Merge with sibling, delete in-between key in parent.

Delete

- Get >= 1 from sibling and update parent key.

Delete

- Merge with sibling, delete in-between key in parent.

Delete

Delete

Delete pair with key $=6$.

- Merge with sibling, delete in-between key in parent.

Delete

Index node becomes deficient.
Get >= 1 from sibling, move last one to parent, get parent key.

Delete

Delete 9.
Merge with sibling, delete in-between key in parent.

Delete

Index node becomes deficient.
Merge with sibling and in-between key in parent.

Delete

Index node becomes deficient.
It's the root; discard.

B*-Trees

Root has between 2 and 2 * floor $((2 m-2) / 3)+1$ children.
Remaining nodes have between ceil((2m-1)/3) and m children.
All external/failure nodes are on the same level.

Insert

- When insert node is overfull, check adjacent sibling.
- If adjacent sibling is not full, move a dictionary pair from overfull node, via parent, to nonfull adjacent sibling.
- If adjacent sibling is full, split overfull node, adjacent full node, and inbetween pair from parent to get three nodes with floor((2m-2)/3),
floof($(2 m-1) / 3)$, floor($2 \mathrm{~m} / 3$) pairs plus two additional pairs for insertion into parent.

Delete

- When combining, must combine 3 adjacent nodes and 2 inbetween pairs from parent.
- Total \# pairs involved = 2 * floor((2m-2)/3) + [floor((2m-2)/3) - 1$]+2$
- Equals 3 * floor((2m-2)/3) + 1
- Combining yields 2 nodes and a pair that is to be inserted into the parent.
- $\operatorname{mmod} 3=0=>$ nodes have $m-1$ pairs each.
- $m \bmod 3=1$ => one node has $m-1$ pairs and the other has m - 2
- $\operatorname{mmod} 3=2$ => nodes have $m-2$ pairs each.

