
B+-Trees

Same structure as B-trees.

Dictionary pairs are in leaves only. Leaves
form a doubly-linked list.

Remaining nodes have following structure:

j a0 k1 a1 k2 a2 …kj aj

• j = number of keys in node.

• ai is a pointer to a subtree.

• ki <= smallest key in subtree ai and > largest

in ai-1.

Example B+-tree

9

5

1 3 5 6 30 409 16 17

16 30

 index node

 leaf/data node

B+-tree—Search

9

5

1 3 5 6 30 409 16 17

16 30

key = 5

6 <= key <= 20

B+-tree—Insert

9

5

5 6 30 409 16 17

16 30

Insert 10

1

16 30

Insert

9

5

1 3 5 6 30 409

• Insert a pair with key = 2.

• New pair goes into a 3-node.

16 17

Insert Into A 3-node
 Insert new pair so that the keys are in ascending order.

• Split into two nodes.

2 31

1 2 3

• Insert smallest key in new node and pointer

to this new node into parent.

2

2 31

9

Insert
9

5

5 6 30 4016 17

2

• Insert an index entry 2 plus a pointer into parent.

2 3

1

16 30

Insert

• Now, insert a pair with key = 18.

9

1

2 5

5 6 30 409 16 17

16 30

2 3

Insert

• Now, insert a pair with key = 18.

9

1

2 5

5 6 30 409

16 30

2 3 16

17

17 18

• Insert an index entry17 plus a pointer into parent.

Insert

• Now, insert a pair with key = 18.

9

1

2 5

5 62 3

• Insert an index entry17 plus a pointer into parent.

9

16

16 17 18 30 40

17

30

Insert

• Now, insert a pair with key = 7.

1

2 5

5 62 3 9

16

16 17 18 30 40

30

9 17

Delete

• Delete pair with key = 16.

9

1

2 5

5 6 30 409 16 17

16 30

2 3

• Note: delete pair is always in a leaf.

Delete

• Delete pair with key = 16.

9

1

2 5

5 6 30 409

16 30

2 3

• Note: delete pair is always in a leaf.

17

Delete

• Delete pair with key = 1.

9

1

2 5

5 6 30 409

16 30

2 3 17

• Get >= 1 from sibling and update parent key.

Delete

• Delete pair with key = 1.

9

2

3 5

5 6 30 409

16 30

17

• Get >= 1 from sibling and update parent key.

3

Delete

• Delete pair with key = 2.

9

2

3 5

5 6 30 409

16 30

17

• Merge with sibling, delete in-between key in parent.

3

Delete

• Delete pair with key = 3.

9

3 5 6 30 409

16 30

17

•Get >= 1 from sibling and update parent key.

5

Delete

• Delete pair with key = 9.

9

5 30 409

16 30

17

• Merge with sibling, delete in-between key in parent.

6

6

Delete
9

5
30 4017

6

6

30

Delete

• Delete pair with key = 6.

9

5 30 409

16 30

17

• Merge with sibling, delete in-between key in parent.

6

6

Delete

• Index node becomes deficient.

9

5 30 409

16 30

17

•Get >= 1 from sibling, move last one to parent, get

parent key.

Delete

• Delete 9.

16

5 30 409

30

17

• Merge with sibling, delete in-between key in parent.

9

Delete

•Index node becomes deficient.

16

5 30 40

30

17

• Merge with sibling and in-between key in parent.

Delete

•Index node becomes deficient.

5 30 4017

• It’s the root; discard.

16 30

B*-Trees

 Root has between 2 and 2 * floor((2m – 2)/3) + 1 children.

 Remaining nodes have between ceil((2m – 1)/3) and m children.

 All external/failure nodes are on the same level.

Insert

 When insert node is overfull, check adjacent sibling.

 If adjacent sibling is not full, move a dictionary pair from overfull node,

via parent, to nonfull adjacent sibling.

 If adjacent sibling is full, split overfull node, adjacent full node, and in-

between pair from parent to get three nodes with floor((2m – 2)/3),

floor((2m – 1)/3), floor(2m/3) pairs plus two additional pairs for insertion

into parent.

Delete

 When combining, must combine 3 adjacent nodes and 2 in-
between pairs from parent.

 Total # pairs involved = 2 * floor((2m-2)/3) + [floor((2m-2)/3) – 1] + 2.

 Equals 3 * floor((2m-2)/3) + 1.

 Combining yields 2 nodes and a pair that is to be inserted into
the parent.

 m mod 3 = 0 => nodes have m – 1 pairs each.

 m mod 3 = 1 => one node has m – 1 pairs and the other has m – 2.

 m mod 3 = 2 => nodes have m – 2 pairs each.

