B*-Trees

[Py]
» Same structure as B-trees.

» Dictionary pairs are in leaves only. Leaves
form a doubly-linked list.

®» Remaining nhodes have following structure:

Jagkiakya,... kg,

°/ | = number of keys in node.
* & 1S a pointer to a subtree.

e k; <= smallest key In subtree a; and > largest
In a, ;.

Example B+-tree

T

\G) 5 6 (96 1@0 40

: = Index node

-» leaf/data node

B+-tree—Search

.\
A DB o> o

ey:5

§\<= key <= 20

B+-free—Insert

V2%

sert 10

Insert

.

ert a pair with key = 2.

&

ew pair goes into a 3-node.

Insert Into A 3-node

ert new pair so that the keys are in ascending order.

123

» Split into two nodes.

nsert smallest key in new node and pointer
to this new node into parent.

o @

Insert an index entry 2 plus a pointer into parent.

Insert

o

§ aves @w

ow, Insert a pair with key = 18.

Insert

ow, Insert a pair with key = 18.
Insert an index entry17 plus a pointer into parent.

Insert

(9 (9 @ 13@ 4

Now, Insert a pair with key = 18.
Insert an index entry17 plus a pointer into parent.

Insert

s)® BTBRL

ow, Insert a pair with key = 7.

Delete

elete pair with key = 16.
ote: delete pair is always in a leaf.

Delete

elete pair with key = 16.
ote: delete pair is always in a leaf.

Delete

@@ k

Delete pair with key = 1.

\Get >= 1 from sibling and update parent key.

Delete

(e);@ k

Delete pair with key = 1.

\Get >= 1 from sibling and update parent key.

Delete

‘e);@ k

Delete pair with key = 2.

\

\IMerge with sibling, delete in-between key In parent.

Delete

/@) a» k

Delete pair with key = 3.

‘Get >= 1 from sibling and update parent key.

elete pair with key = 9.

erge with sibling, delete in-between key in parent.

Delete
(6

Delete

B,

elete pair with key = 6.

“\Merge with sibling, delete in-between key in parent.

Delete

ndex node becomes deficient.

et >= 1 from sibling, move last one to parent, get
ent key.

Delete

§ &

elete 9.

erge with sibling, delete in-between key in parent.

Delete

=

Index node becomes deficient.

erge with sibling and in-between key in parent.

Delete

Index node becomes deficient.

t’s the root; discard.

B*-Trees

Root has between 2 and 2 * floor((2m - 2)/3) + 1 children.
Remaining nodes have between cell((2m - 1)/3) and m children.

All external/failure nodes are on the same level.

Insert

» When insert node is overfull, check adjacent sibling.

» |f adjacent sibling is not full, move a dictionary pair from overfull node,
via parent, to nonfull adjacent sibling.

» |f adjacent sibling is full, split overfull node, adjacent full node, and in-

betwegn pair from parent to get three nodes with floor((2m — 2)/3),

((2m — 1)/3), floor(2m/3) pairs plus two additional pairs for insertion
parent.

Delete

» \When combining, must combine 3 adjacent nodes and 2 in-
between pairs from parent.

» Total # pairs involved = 2 * floor((2m-2)/3) + [floor((2m-2)/3) = 1] + 2
uals 3 * floor((2m-2)/3) + 1

» Cg@dmbining vields 2 nodes and a pair that is to be inserted into
e parent.

» m mod 3 =0 =>nodes have m -1 pairs each.

®» M mod 3 =1=>one node has m-1 pairs and the other has m — 2

®» m mod 3 =2 =>nodes have m -2 pairs each.

