
p1.

B-Tree

p2.

Multiway search tree
 A tree was defined as either an empty structure or a structure

whose children are disjoint tree t1,t2,…tk. Each node of this kind of

tree can have more than two children. This tree called a multiway

tree of order m, or an m-way tree.

 A Multiway search tree of order m, or an m-way search tree, is a

Multiway search tree in which

 Each node has m children and m-1 keys

 The keys in each node are in ascending order

 The keys in the first i children are smaller the ith key

 The keys in the last m-i children are larger than the ith key

 M-way search tree m-way tree

 Binary search tree binary tree

p3.

Introduction of B-tree

 B-tree: proposed by Bayer and McCreight 1972

 A B-tree operates closely with secondary storage and

can be tuned to reduce the impediments imposed by

this storage

 One important property of B-trees is the size of each

node which can be made as large as the size of the

block. (the basic unit of I/O operations associated with

a disk is a block)

 a B-tree of order t is a multiway search tree.

 Thm：

If , then for any n-key B-tree T of height h and minimum degree

Proof：

1n ,2t

.log 2

1

n

th

1

t-
1

t-
1

t-
1

t-
1

t-
1

t-
1

t t

t t t t

1

2

2t

2t2

h

i

ihtn
1

1
211)(

.)(12
1

1
121

 h

h

t
t

t
t

.log . ht
n n

t
h

2

1

2

1

p5.

 A B-tree is not a binary tree because B-tree has many

more than two children

 B-trees may be formulated to store a set of elements

or a bag of elements. (a given elements can occur

many times in a bag but only once in a set)

 A B-tree is balanced.

 Every leaf in a B-tree has the same depth

 2-3-4 tree (discussed by Rudolf Bayer): a B-tree of order 4

(min degree=2)

p6.

The elements in a B-tree node

 Rule 1:the root may have as few as one elements (or even no
elements if it also has no children); every other node has at least
minimum elements

 Rule 2: the maximum number of elements in a node is twice the value
of minimum

 Rule 3: the elements of each B-tree node are stored in a partially filled
array, sorted from the smallest elements (at index 0) to the largest
elements (at the final used position of the array)

 Rule 4: the number of subtrees below a nonleaf node is always one
more than the number of the elements in the node.

 Rule 5: for any leaf node: (1) an element at index i is greater than all
the elements in subtree number i of the node, and (b) an element at
index i is less than all the elements in subtree number i+1 of the node.

p7.

66 88

Subtree
number 0

Subtree
number 1

Subtree
number 2

Each element
in subtree
number 0 is
less than 66

Each element in
subtree number
1 is between 66
and 88.

Each element in
subtree number
2 is greater than
88

p8.

 convention：

 Root of the B-tree is always in main memory.

 Any nodes that are passed as parameters must already have

had a DISK_READ operation performed on them.

 Operations：

 Searching a B-Tree.

 Creating an empty B-tree.

 Splitting a node in a B-tree.

 Inserting a key into a B-tree.

 Deleting a key from a B-tree.

p9.

 B-Tree-Search(x,k)：

 Algorithm：

 Total CPU time：

B-Tree-Search(x,k)

{

)],[Search(-Tree-Breturn

])[READ(-DISK else

NULLreturn then][

),return(n the

][and][

 do

][and][while

kxC

xC

xleafif

ix

xkeykxniif

ii

xkeykxni

i

i

i

i

i

1

1

}

).log()(ntOthO t

p10.

 B-Tree-Created(T)：

 Algorithm：

 time：

B-Tree-Create(T)

{

xroot[T]

WRITE(x)-DISK

0n[x]

TRUE][Leaf

()NodeAllocate

x

x

}

)(1O

p11.

 B-Tree-Split-Child(x,i,y)：

 Splitting a node in a B-Tree：

… N
W …

x

Keyi-1[x]

y=Ci[x]

P Q R S T U
V

T1 T2 T4T3 T5 T6 T8T7

Keyi [x]t=4

full

… N S
W …

y=Ci[x]

T U V

T5 T6 T8T7

11 iii keykeykeyx

P Q R

T1 T2 T4T3

z=Ci+1[x]

Splitting a full node y (have 2t-1 keys) around its median key keyt[y] into

2 nodes having (t-1) keys each.

p12.

 Algorithm：

B-Tree-Split-Child(x,I,y)

{ Node()-Allocatez

}

leaf[y]leaf[z]

1 tn[z]

][key][key 1- t tjj yzdotojfor 1

thenif leaf[y]not

][][C t tjj yCzdotojfor 1

1 tn[y]

][][C 1i][j1j xCxdodowntoxnjfor 1

z[x]C 1j

][][Key i][j1j xKeyxdodowntoxnjfor

][Key][Key ti yx

1]x[nn[x]

WRITE(y)-DISK

WRITE(z)-DISK

WRITE(x)-DISK

p13.

 B-Tree-Insert(T,k)：

 Insert a key in a B-Tree：

Root[T]

r

A D F H L N
P

T1 T2 T4T3 T5 T6 T8T7

t=4

H

r

L N P

T5 T6 T8T7

A D F

T1 T2 T4T3

Root[T]

S

p14.

 Algorithm：

B-Tree-Insert(T,k)

{]T[rootr

}

thenif 1-2tn[r]

0n[S]

{ Node()-AllocateS

S]T[root

FALSE]S[leaf

r[S]Ci

B-Tree-Split-Child(S,l,r)

B-Tree-Insert-Nonfull(S,k)
}

k)Nonfull(r,-Insert-Tree-B else

 B-Tree-Insert-Nonfull(x,k)：

 Algorithm：

B-Tree-Insert-Nonfull(x,k)

{][ni x

thenif leaf[x]

{][keyk and 1i i xwhile

][key][key { 1i xxdo i

} i 1 i

}

kx][key 1i

1]x[n][n x

} WRITE(x)-DISK

else

{][keyk and 1i i xwhile

1-ii do

1 ii

[x])READ(C-DISK i

1-2t[x]]n[C i if

[x])Ci,Child(x,-Split-Tree-B ithen

1ii [x]keyk i thenif

B-Tree-Insert-Nonfull(Ci[x],k) }

 Example：Inserting keys into a B-Tree.

A C D
E

t=3

(a) Initial tree

J
K

N
O

R S T
U V

Y
Z

G M P
X

A B C
D E

J
K

N
O

R S T
U V

Y
Z

G M P
X

(b) B inserted

A B C
D E

J
K

N
O

Q R S Y
Z

G M P T
X

(c) Q inserted

U
V

R
S

U
V

G M P T
X

A B C
D E

J K
L

N
O

Q R
S

Y
Z

(d) L insert

U
V

P

G
M

T
X

A
B

J K
L

N
O

Q R
S

Y
Z

(e) F insert

U
V

P

C G
M

T
X

D E
F

 Deleting a key from a B-Tree：

1. K is in x and x is a leaf：

2. K is in x and x is an internal node：

a.

b.

c. if both y,z has t-1 keys.

Merge y,z and k into y.

Recursively delete k from y.

(x has t keys)

K

x

delete k from x.

K

x

k’ keys t

y

Recursively delete k’ and replace k by k’ in x.

K

x

k’
keys t

z

K

z

x

t+1t+1

y

K2t-1

3. If K is not in internal node x：

a. If Ci[x] has only t-1 keys but has a sibling with t keys

b. If Ci[x] and all of Ci[x]’s siblings have t-1 keys, merge ci with one sibling.

K

x

Ci[x]

k is in this subtree.

K

t-1

x

Ci[x] t

• Move a key from x down to Ci[x].

• Move a key from Ci[x]’s sibling to x.

• Move an appropiate child to Ci[x] from its sibling.

0

x

t-1
keys

0
2t-1
keys

Ci[x]
t-1
keys

 Example：Deleting a key from a B-Tree.

t=3

(a) Initial tree

(b) F delete：case 1

A
B

J K
L

N
O

Q R
S

Y
Z

U
V

P

C G
M

T
X

D E
F

A
B

J K
L

N
O

Q R
S

Y
Z

U
V

P

C G
M

T
X

D E

(c) M delete：case 2a

A
B

J
K

N
O

Q R
S

Y
Z

U
V

P

C G
L

T
X

D
E

(d) G deleted：case 2c

A
B

N
O

Q R
S

Y
Z

U
V

P

C L T
X

D E J
H

(e) D deleted：case 3b

C L P
T X

A
B

N
O

Q R
S

Y
Z

U
V

E J
K

(e’) tree shrinks in height

C L P
T X

A
B

N
O

Q R
S

Y
Z

U
V

E J
K

(f) B delete：case 3a

E L P
T X

A
C

N
O

Q R
S

Y
Z

U
V

J
K

