B-Tree

l oSl ‘

Multiway search tree

A tree was defined as either an empty structure or a structure
whose children are disjoint tree t,.1,,...t,. EQch node of this kind of
tree can have more than two children. This free called a multiway
tree of order m, or an m-way tree.

» A Multiway search free of order m, or an m-way search tree, is a
Multiway search tree in which

Each node has m children and m-1 keys

» The keys in each node are in ascending order

» The keys in the first i children are smaller the ith key

» The keys in the last m-i children are larger than the ith key
M-way search tree > m-way iree

Binary search tree - binary free

p2.

Infroduction of B-tree

» B-free: proposed by Bayer and McCreight 1972

» A B-tree operates closely with secondary storage and
can be tuned to reduce the impediments imposed by
this storage

» One important property of B-trees is the size of each
node which can be made as large as the size of the
block. (the basic unit of I/O operations associated with
a disk is a block)

» (O B-tree of order tis a multiway search tree.

p3.

» Thm :

If n>1, then for any n-key B-tree T of height h and minimum degree t > 2,

n+1

h<log, 2 .

Proof :

A
AN 4 O\
A\

2t

-
/N
t 2¢2

t- t- t

WA

h .
n>1+(t+1)> 2h'™*

=1

t"—1)
=1+2(t+1)- = =2t —1.

n+1 n+l
L o log, 2 >h.

A B-tree is not a binary tree because B-tree has many
more than two children

B-trees may be formulated to store a set of elements
or a bag of elements. (a given elements can occur
many times in a bag but only once in a set)

A B-tree is balanced.

Every leaf in a B-tree has the same depth

2-3-4 tree (discussed by Rudolf Bayer): a B-free of order 4
(min degree=2)

p5.

The elements in a B-free node

Rule 1:the root may have as few as one elements (or even no
elements if it also has no children); every other node has at least
minimum elements

®» Rule 2: the maximum number of elements in a node is twice the value
of minimum

’the elements of each B-tree node are stored in a partially filled
, sorted from the smallest elements (af index 0) to the largest
ents (at the final used position of the array)

le 4. the number of subtrees below a nonleaf node is always one
ore than the number of the elements in the node.

Rule 5: for any leaf node: (1) an element af index i is greater than all
the elements in subtree number i of the node, and (b) an element at
index i is less than all the elements in subtree number i+1 of the node.

p6.

| 66]4]88 |

Each element Each element in Each element in
in subtree subtree number subtree number
number 0 is 1 is between 66 2 is greater than

less than 66 and 88. 88

= convention :
= Rooft of the B-tree is always in main memory.
®» Any nodes that are passed as parameters must already have
had a DISK_READ operation performed on them.
» Operations :

» Segfching a B-Tree.

reating an empty B-tree.

Splitting a node in a B-tree.
® |nserting a key info a B-tree.

» Deleting a key from a B-tree.

p8.

» B-Tree-Search(xk) :
» Algorithm :

B-Tree-Search(x,k)
{ 1«1
while 1 <n[x] and k > key;[X]
do 1«<i+1
If 1<n[x] and k =key[X]
then return(x,1)
If leaf[x] then return NULL
else DISK - READ(Ci[x])

return B - Tree - Search(C;[x], k)

¥
» Total CPU time :
O(th) =O(tlog, n).

po.

» B-Tree-Created(T) :
» Algorithm :

B-Tree-Create(T)

{ x<« Allocate— Node()
Leaf[x] « TRUE
n[x]« 0

DISK - WRITE(X)
root[T] < x

¥
= time : O(1)

p10.

» B-Tree-Split-Child(x,i,y) :

» Splitting a node in a B-Tree .

i x key,, key; keyi,
X Key; [x] e N S
WN > v=Ci[)‘())%" \f=ci+1[x]
| y=Cilx] - =
P Q, R S T/|U | < | L
T [T |11
IERERENT T T T Ty T, T, T3, T Ts T, T

Splitting a full node y (have 2t-1 keys) around its median key key,[y] into
2 nodes having (t-1) keys each.

pll.

» Algorithm :
B-Tree-Split-Child(x,1,y)

{

z < Allocate - Node()
leaf[z] « leaf[y]
nfz]«t-1
for j<~1to t-1 do key;[z] < key;[Y]
if not leaf[y] then
for j<-1to tdo Cj[z]<«C; [y]
nfy]«t-1
for j<n[x]+1 downto i+1 do C;,[x]<« C;[X]

Cjulx]«z
for j<n[x] downto i do Key;,[x]<« Key;[X]
Key;[x] «— Key,[y]
n[x] < n[x]+1
DISK - WRITE(y)

DISK - WRITE(2)
DISK - WRITE(X)

pl2.

» B-Tree-Insert(T,k) :

Root[T]

|+

A D, F H LN

LI

T, T, T3T, Ts Ty T, T

® |nserf a key in a B-Tree

RoOt[T]
Is
H
2
D, F L, N

pl3.

» Algorithm :

B-Tree-Insert(T,k)
{ I < root[T]
if n[r]=2t-1 then
{ S« Allocate- Node()
root[T] « S
leaf[S] «— FALSE
n[S]« 0
Ci[S]«r
B-Tree-Split-Child(S,,r)

B-Tree-Insert-Nonfull(S, k)
)

else B - Tree - Insert - Nonfull(r, k)

pl4.

» B-Tree-Insert-Nonfull(x,k)
» Algorithm :

B-Tree-Insert-Nonfull(x, k)
{ 1< n[X]
if leaf[x] then
{ while i>1 and k <key;[x]
do { key;,[x] <« key;[X]
< i-1}
key; ;[X] < k
n[x] < n[x]+1
DISK - WRITE(X) }

else
{ while i>1 and k <key,[X]
doi<«i-1
l<—i+1

DISK - READ(Ci[X])
If n[C[x]]=2t-1
then B - Tree -Split - Child(x,1,C;[X])
if k>key,[x] then i<«i+1
B-Tree-Insert-Nonfull(C,[x],k) }

®» Example : Inserting keys info a B-Tree.

t=3
(a) Initial tree

=
w2
—]
—~y

(d) L insert

R
/M \\ \A
A C J K Q R Y
D E L S Z
(e) F insert
_ R

] N
A D Q U Y

B F L Z

» Deleting a key from a B-Tree

X has > t keys
(1.Kisinxon%|x)isoleof:

X

/

K

_ delete k from x.
2. Kisin x and x is an internal node ;

a. X

/

/ K Recursively delete k' and replace k by k'’ in x.
Y

X

/

K
y 4
\\' o >t keys
c. if both y,z has t-1<keys.

kKt keys

Merge y,z and k into y. X

Recursively delete k fromy.

t+1 t+l e q

3. If Kis not in internal node x :
X

/ \ ¢k is in this subtree.

a. If C,[x] has only t-1 keys but has a sibling with t keys

X
! . * Move a key from x down to C,[x].
e Move a key from C,[x]’s sibling to x.
- / ci[x]\ y i[x] g

e Move an appropiate child to C,[x] from its sibling.

b. If C,[x] and all of C,[x]’s siblings have t-1 keys, merge c; with one sibling.

X o

0
- J CIxIN t-1 / e
keys keys L keys

» Example . Deleting a key from a B-Tree.

t=3

(a) Initial tree

A D E J K R
B F |4 Z
(b) F delete : case 1 >
,/A/‘NfC/ (f \
B I Z
(c) M delete : case 2a
R

. C,

.

A D

HA/Q

(d) G deleted : case 2c

_ B
/fC\L\ k\‘
A D E J N Q R U Y

B H
(e) D deleted : case 3b

A E

B K 0

A E R U Y
B K S V 7
(f) B delete : case 3a
E L P~ A
A J Q R U Y
C K 0 S \ 7

