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Multiway search tree

A tree was defined as either an empty structure or a structure
whose children are disjoint tree t,.1,,...t,. EQch node of this kind of
tree can have more than two children. This free called a multiway
tree of order m, or an m-way tree.

» A Multiway search free of order m, or an m-way search tree, is a
Multiway search tree in which

Each node has m children and m-1 keys

» The keys in each node are in ascending order

» The keys in the first i children are smaller the ith key

» The keys in the last m-i children are larger than the ith key
M-way search tree > m-way iree

Binary search tree - binary free

p2.



Infroduction of B-tree

» B-free: proposed by Bayer and McCreight 1972

» A B-tree operates closely with secondary storage and
can be tuned to reduce the impediments imposed by
this storage

» One important property of B-trees is the size of each
node which can be made as large as the size of the
block. (the basic unit of I/O operations associated with
a disk is a block)

» (O B-tree of order tis a multiway search tree.
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» Thm :

If n>1, then for any n-key B-tree T of height h and minimum degree t > 2,
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A B-tree is not a binary tree because B-tree has many
more than two children

B-trees may be formulated to store a set of elements
or a bag of elements. (a given elements can occur
many times in a bag but only once in a set)

A B-tree is balanced.

Every leaf in a B-tree has the same depth

2-3-4 tree (discussed by Rudolf Bayer): a B-free of order 4
(min degree=2)
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The elements in a B-free node

Rule 1:the root may have as few as one elements (or even no
elements if it also has no children); every other node has at least
minimum elements

®» Rule 2: the maximum number of elements in a node is twice the value
of minimum

’the elements of each B-tree node are stored in a partially filled
, sorted from the smallest elements (af index 0) to the largest
ents (at the final used position of the array)

le 4. the number of subtrees below a nonleaf node is always one
ore than the number of the elements in the node.

Rule 5: for any leaf node: (1) an element af index i is greater than all
the elements in subtree number i of the node, and (b) an element at
index i is less than all the elements in subtree number i+1 of the node.
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= convention :
= Rooft of the B-tree is always in main memory.
®» Any nodes that are passed as parameters must already have
had a DISK_READ operation performed on them.
» Operations :

» Segfching a B-Tree.

reating an empty B-tree.

Splitting a node in a B-tree.
® |nserting a key info a B-tree.

» Deleting a key from a B-tree.
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» B-Tree-Search(xk) :
» Algorithm :

B-Tree-Search(x,k)
{ 1«1
while 1 <n[x] and k > key;[X]
do 1«<i+1
If 1<n[x] and k =key[X]
then return(x,1)
If leaf[x] then return NULL
else DISK - READ(Ci[x])

return B - Tree - Search(C;[x], k)

¥
» Total CPU time :
O(th) =O(tlog, n).
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» B-Tree-Created(T) :
» Algorithm :

B-Tree-Create(T)

{ x<« Allocate— Node()
Leaf[x] « TRUE
n[x]« 0

DISK - WRITE(X)
root[T] < x

¥
= time : O(1)
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» B-Tree-Split-Child(x,i,y) :

» Splitting a node in a B-Tree .

i x key,, key; keyi,
X Key; [x] e N S
WN > v=Ci[)‘())%" \f=ci+1[x]
| y=Cilx] - =
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Splitting a full node y ( have 2t-1 keys ) around its median key key,[y] into
2 nodes having (t-1) keys each.
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» Algorithm :
B-Tree-Split-Child(x,1,y)

{

z < Allocate - Node()
leaf[z] « leaf[y]
nfz]«t-1
for j<~1to t-1 do key;[z] < key;[Y]
if not leaf[y] then
for j<-1to tdo Cj[z]<«C; [y]
nfy]«t-1
for j<n[x]+1 downto i+1 do C;,[x]<« C;[X]

Cjulx]«z
for j<n[x] downto i do Key;,[x]<« Key;[X]
Key;[x] «— Key,[y]
n[x] < n[x]+1
DISK - WRITE(y)

DISK - WRITE(2)
DISK - WRITE(X)
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» B-Tree-Insert(T,k) :

Root[T]
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® |nserf a key in a B-Tree

RoOt[T]
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» Algorithm :

B-Tree-Insert(T,k)
{ I < root[T]
if n[r]=2t-1 then
{ S« Allocate- Node()
root[T] « S
leaf[S] «— FALSE
n[S]« 0
Ci[S]«r
B-Tree-Split-Child(S,,r)

B-Tree-Insert-Nonfull(S, k)
)

else B - Tree - Insert - Nonfull(r, k)
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» B-Tree-Insert-Nonfull(x,k)
» Algorithm :

B-Tree-Insert-Nonfull(x, k)
{ 1< n[X]
if leaf[x] then
{ while i>1 and k <key;[x]
do { key;,[x] <« key;[X]
< i-1}
key; ;[X] < k
n[x] < n[x]+1
DISK - WRITE(X) }

else
{ while i>1 and k <key,[X]
doi<«i-1
l<—i+1

DISK - READ(Ci[X])
If n[C[x]]=2t-1
then B - Tree -Split - Child(x,1,C;[X])
if k>key,[x] then i<«i+1
B-Tree-Insert-Nonfull(C,[x],k) }



®» Example : Inserting keys info a B-Tree.

t=3
(a) Initial tree
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(d) L insert
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» Deleting a key from a B-Tree

X has > t keys
( 1.Kisinxon%|x)isoleof:

X

/

K

_ delete k from x.
2. Kisin x and x is an internal node ;

a. X

/

/ K Recursively delete k' and replace k by k'’ in x.
Y

X

/

K
y 4
\\' o >t keys
c. if both y,z has t-1<keys.

kKt keys

Merge y,z and k into y. X

Recursively delete k fromy.

t+1 t+l e q




3. If Kis not in internal node x :
X

/ ......... \ ¢k is in this subtree.

a. If C,[x] has only t-1 keys but has a sibling with t keys

X
! . * Move a key from x down to C,[x].
e Move a key from C,[x]’s sibling to x.
- / ci[x]\ y i[x] g

e Move an appropiate child to C,[x] from its sibling.

b. If C,[x] and all of C,[x]’s siblings have t-1 keys, merge c; with one sibling.
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» Example . Deleting a key from a B-Tree.

t=3

(a) Initial tree
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(b) F delete : case 1 >
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(d) G deleted : case 2c
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(e) D deleted : case 3b
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(f) B delete : case 3a
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