B-Tree

Multiway search †ree

- A tree was defined as either an empty structure or a structure whose children are disjoint tree $\dagger_{1}, t_{2}, \ldots t_{k}$. Each node of this kind of tree can have more than two children. This tree called a multiway tree of order m, or an m-way tree.
- A Multiway search tree of order m, or an m-way search tree, is a Multiway search tree in which
- Each node has m children and m-1 keys
- The keys in each node are in ascending order
- The keys in the first \boldsymbol{i} children are smaller the ith key
- The keys in the last m-i children are larger than the ith key
- M-way search tree \rightarrow m-way tree
- Binary search tree \rightarrow binary tree

Introduction of B-tree

- B-tree: proposed by Bayer and McCreight 1972
- A B-tree operates closely with secondary storage and can be tuned to reduce the impediments imposed by this storage
- One important property of B-trees is the size of each node which can be made as large as the size of the block. (the basic unit of I/O operations associated with a disk is a block)
- a B-tree of order t is a multiway search tree.
- Thm:

If $n \geq \mathbf{1}$, then for any n -key B -tree T of height h and minimum degree $t \geq \mathbf{2}$,

$$
h \leq \log _{t} \frac{n+1}{2} .
$$

Proof :

$$
\begin{aligned}
& n \geq \mathbf{1}+(t+\mathbf{1}) \sum_{i=\mathbf{1}}^{h} \mathbf{2} h^{i-\mathbf{1}} \\
& =\mathbf{1}+\mathbf{2}(t+\mathbf{1}) \cdot\left(\frac{t^{h}-\mathbf{1}}{t-\mathbf{1}}\right)=\mathbf{2} t^{h}-\mathbf{1} . \\
& \frac{n+\mathbf{1}}{\mathbf{2}} \geq t^{h} . \quad \quad \log _{t} . \quad \frac{n+\mathbf{1}}{2} \geq h .
\end{aligned}
$$

- A B-tree is not a binary tree because B-tree has many more than two children
- B-trees may be formulated to store a set of elements or a bag of elements. (a given elements can occur many times in a bag but only once in a set)
- A B-tree is balanced.
- Every leaf in a B-tree has the same depth
- 2-3-4 tree (discussed by Rudolf Bayer): a B-tree of order 4 (min degree=2)

The elements in a B-tree node

- Rule 1:the root may have as few as one elements (or even no elements if it also has no children); every other node has at least minimum elements
- Rule 2: the maximum number of elements in a node is twice the value of minimum
- Rule 3: the elements of each B-tree node are stored in a partially filled array, sorted from the smallest elements (at index 0) to the largest elements (at the final used position of the array)
- Rule 4: the number of subtrees below a nonleaf node is always one more than the number of the elements in the node.
- Rule 5: for any leaf node: (1) an element at index i is greater than all the elements in subtree number i of the node, and (b) an element at index i is less than all the elements in subtree number $i+1$ of the node.

- convention:
- Root of the B-tree is always in main memory.
- Any nodes that are passed as parameters must already have had a DISK_READ operation performed on them.
- Operations:
- Searching a B-Tree.
- Creating an empty B-tree.

Splitting a node in a B-tree.
Inserting a key into a B-tree.

- Deleting a key from a B-tree.
- B-Tree-Search(x,k) :
- Algorithm :

B-Tree-Search (x,k)

$\{\quad i \leftarrow \mathbf{1}$
while $i \leq n[x]$ and $k>\operatorname{key}_{i}[x]$

$$
\text { do } i \leftarrow i+\mathbf{1}
$$

if $i \leq n[x]$ and $k=\operatorname{key}_{i}[x]$
then return (x, i)
if leaf $[x]$ then return NULL

$$
\begin{aligned}
& \text { else } \operatorname{DISK~-~} \operatorname{READ}\left(C_{i}[x]\right) \\
& \text { return B - Tree - } \operatorname{Search}\left(C_{i}[x], k\right)
\end{aligned}
$$

- Total ${ }^{3}$ CPU time :

$$
O(t h)=O\left(t \log _{t} n\right)
$$

- B-Tree-Created (T) :
- Algorithm :

B-Tree-Create(T)

$\{\quad x \leftarrow$ Allocate - Node ()
Leaf $[x] \leftarrow$ TRUE
$\mathrm{n}[\mathrm{x}] \leftarrow 0$
DISK - WRITE(x)
$\operatorname{root}[\mathrm{T}] \leftarrow \mathrm{x}$
\}
time : $\boldsymbol{O}(\mathbf{1})$

- B-Tree-Split-Child(x,i,y) :
- Splitting a node in a B-Tree :
$\operatorname{Key}_{\mathrm{i}-1}[\mathrm{x}]$

Splitting a full node y (have $2 \mathrm{t}-1$ keys) around its median key $\mathrm{key}_{\mathrm{t}}[\mathrm{y}]$ into 2 nodes having ($\mathrm{t}-1$) keys each.

- Algorithm :

$$
\begin{aligned}
& \text { B-Tree-Split-Child(x,I,y) } \\
& \text { \{ } \quad \mathrm{z} \leftarrow \text { Allocate-Node }() \\
& \text { leaf[z] } \leftarrow \text { leaf[y] } \\
& \mathrm{n}[\mathrm{z}] \leftarrow \mathrm{t}-\mathbf{1} \\
& \text { for } j \leftarrow \mathbf{1} \text { to } \mathrm{t}-1 \text { do } \operatorname{key}_{\mathrm{j}}[z] \leftarrow \operatorname{key}_{\mathrm{j}+\mathrm{t}}[y] \\
& \text { if not leaf[y] then } \\
& \text { for } j \leftarrow \mathbf{1} \text { to } \mathrm{t} \text { do } \mathrm{C}_{\mathrm{j}}[z] \leftarrow C_{\mathrm{j}+\mathrm{t}}[y] \\
& \mathrm{n}[\mathrm{y}] \leftarrow \mathrm{t}-\mathbf{1} \\
& \text { for } j \leftarrow n[x]+\mathbf{1} \text { downto } \mathrm{i}+1 \text { do } \mathrm{C}_{\mathrm{j}+1}[x] \leftarrow C_{\mathrm{j}}[x] \\
& \mathrm{C}_{\mathrm{j}+1}[\mathrm{x}] \leftarrow \mathrm{z} \\
& \text { for } j \leftarrow n[x] \text { downto } \mathrm{i} \text { do } \operatorname{Key}_{\mathrm{j}+1}[x] \leftarrow \operatorname{Key}_{\mathrm{j}}[x] \\
& \operatorname{Key}_{\mathrm{i}}[x] \leftarrow \operatorname{Key}_{\mathrm{t}}[y] \\
& \mathrm{n}[\mathrm{x}] \leftarrow \mathrm{n}[\mathrm{x}]+1 \\
& \text { DISK - WRITE(y) } \\
& \text { DISK - WRITE(z) } \\
& \text { DISK - WRITE(x) }
\end{aligned}
$$

- B-Tree-Insert(T,k) :
- Insert a key in a B-Tree :

- Algorithm :

$$
\begin{aligned}
& \text { B-Tree-Insert(T,k) } \\
& \text { \{ } \quad \mathrm{r} \leftarrow \operatorname{root}[\mathrm{~T}] \\
& \text { if } \mathrm{n}[\mathrm{r}]=2 \mathrm{t}-1 \text { then } \\
& \text { \{ } \quad \mathrm{S} \leftarrow \text { Allocate-Node() } \\
& \operatorname{root}[\mathrm{T}] \leftarrow S \\
& \text { leaf }[\mathrm{S}] \leftarrow \text { FALSE } \\
& \mathrm{n}[\mathrm{~S}] \leftarrow \mathbf{0} \\
& \mathrm{C}_{\mathrm{i}}[\mathrm{~S}] \leftarrow r \\
& \text { B-Tree-Split-Child(S,I,r) } \\
& \text { B-Tree-Insert-Nonfull(S,k) } \\
& \text { \} } \\
& \text { else B - Tree - Insert - Nonfull(r, k) } \\
& \text { \} }
\end{aligned}
$$

- B-Tree-Insert-Nonfull (x,k) :
- Algorithm :

$$
\begin{aligned}
& \text { B-Tree-Insert-Nonfull(} \mathrm{x}, \mathrm{k} \text {) } \\
& \text { \{ } \quad \mathrm{i} \leftarrow \mathrm{n}[x] \\
& \text { if leaf[x] then } \\
& \left\{\text { while } \mathrm{i} \geq 1 \text { and } \mathrm{k}<\operatorname{key}_{\mathrm{i}}[x]\right. \\
& d o\left\{\operatorname{key}_{\mathrm{i}+1}[x] \leftarrow \operatorname{key}_{i}[x]\right. \\
& \mathrm{i} \leftarrow i-\mathbf{1}\} \\
& \operatorname{key}_{\mathrm{i}+1}[x] \leftarrow k \\
& \mathrm{n}[x] \leftarrow \mathrm{n}[\mathrm{x}]+1 \\
& \text { DISK - WRITE(x) \} } \\
& \text { else } \\
& \text { \{ while } \mathrm{i} \geq 1 \text { and } \mathrm{k}<\operatorname{key}_{\mathrm{i}}[x] \\
& \text { do } \mathrm{i} \leftarrow \mathrm{i}-1 \\
& \mathrm{i} \leftarrow i+1 \\
& \text { DISK - READ }\left(\mathrm{C}_{\mathrm{i}}[\mathrm{x}]\right) \\
& \text { if } \mathrm{n}\left[\mathrm{C}_{\mathrm{i}}[\mathrm{x}]\right]=2 \mathrm{t}-1 \\
& \text { then } \mathrm{B} \text { - Tree - Split - Child }\left(\mathrm{x}, \mathrm{i}, \mathrm{C}_{\mathrm{i}}[\mathrm{x}]\right) \\
& \text { if } \mathrm{k}>\operatorname{key}_{\mathrm{i}}[\mathrm{x}] \text { then } \mathrm{i} \leftarrow \mathrm{i}+1 \\
& \text { B-Tree-Insert-Nonfull(} \left.\mathrm{C}_{i}[\mathrm{x}], \mathrm{k}\right) \text { \} }
\end{aligned}
$$

- Example : Inserting keys into a B-Tree.

$$
t=3
$$

(a) Initial tree

(b) \boldsymbol{B} inserted

(c) \boldsymbol{Q} inserted

(d) Linsert

(e) \mathbf{F} insert

- Deleting a key from a B-Tree :

delete k from x .

2. K is in x and x is an internal node :
a.

Recursively delete \mathbf{k}^{\prime} and replace \mathbf{k} by \mathbf{k}^{\prime} in \mathbf{x}.

b.

Merge y, z and k into y.
Recursively delete k from y .

3. If K is not in internal node x :

a. If $\mathrm{C}_{\mathrm{i}}[\mathrm{x}]$ has only $\mathrm{t}-1$ keys but has a sibling with \dagger keys

- Move a key from x down to $C_{i}[x]$.
- Move a key from $C_{i}[x]$'s sibling to x.
- Move an appropiate child to $C_{i}[x]$ from its sibling.
b. If $C_{i}[x]$ and all of $C_{i}[x]$'s siblings have $t-1$ keys, merge c_{i} with one sibling.

2t-1
keys

- Example : Deleting a key from a B-Tree.

$$
t=3
$$

(a) Initial tree

(b) F delete : case 1

(c) M delete : case $2 a$

(d) G deleted : case 2c

(e^{\prime}) tree shrinks in height

(f) B delete: case 3a

