Searching

Finding min/max
Insertion

Deletion

oSl
Sl)

» AVL Tree is a binary search free that satisfies

» For each node, the height of the left and right subtrees can
differ by at most 1

» Recall that the height of a node is defined as the length of
the longest path from that node to a leaf node

» Define the height of an empty free to be -1 for convenience

» Usually, the height of every node are stored in the
Implementation

» A tree saftisfying this property can be proven height = O(log n),
since itis an almost balanced free

= Fast operations (search, insert, delete) can be supported

AVL Tree Example

» Which of the following is an AVL tree?¢

no
no (this is not a BST)

yes

AVL Tree - Operations

» Operations we will consider in this tutorial
» Searching
» Finding minimum/maximum
» Insertion

» Deletion

» Searching and finding min/max are the same as BST

» But now it is guaranteed to finish in Oflog n) fime

Insertion in AVL Tree

» Basically, insertion can be done as in BST

» EQ.Insert 7 and 14 info the following tree

@ Insert 7 @
>

Insertion in AVL Tree

Insert 14

» AVL Property may be violated after insertion

» We need to restore the AVL property

Which nodes may violate

AVL propertye

» Before talking about how to maintain the AVL
property, how can we tell whether the AVL property
is violated after insertion?

» Checking the height of subtrees in every node
» Too slow (O(n) fime to check all nodes)
» Note that all non-ancestors nodes remain OK
2 AVL property on these nodes must still be satisfied
2 No need to check them
» Checking the direct parent of the inserted node?

» No, the direct parent of the inserted node should not violate
AVL property.

Which nodes may violate

AVL propertye

» Checking the grandparent of the inserted node?
» Yes
» In general, checking all ancestors of the inserted node

» Afterinsertion, the height of subtrees of ancestors are
updated

° Q Insert 14 ° @
>

14

Which nodes may violate

AVL propertye

» Therefore, we need to check whether the AVL
property holds for all ancestors of the inserted node
(up to the root)

» Indeed, you may skip the checking of its parent and
the inserted node itself

» |f there is no ancestor violate AVL property
» We are done

» Otherwise, we need to restore the AVL property at
that node

Restore AVL property (Case 0)

» A nodeisinsertedinTl or T2

» AVL property cannot be violated at node x

» The height of T1 and T2 can be increased by at most 1
after insertion

» AVL property can only be violated if the height of
T1 and T2 differ by 1 originally, and an insertion is
occurred at the taller subtree to make it even
taller

Restore AVL property (Case 1)

» A nodeisinserted in T1 and AVL property is violated in node x

» And we assume node x is the lowest node that violate the AVL property

h h
h+1 h+2 |

insert

Restore AVL property (Case 1)

» Swap node x and node y

» After swapping, the subtrees T1, T2 and T3 must be in
their final position

» From BST property, we have T1 <y <T2<x<T3< ...

Single Right Rotation>

lh h+1

+
h+2 h+1

Restore AVL property (Case 4)

» Symmetric case as case |

» Occurs if we insert a node in T3

Single Left Rotation>

h+2 h+1
|h T2 T3 h+1l '
\/

h+2

Restore AVL property (Case 2)

» Single rotation may fail if a node is inserted in T2

» |n this case, we need double rotation

Single Right Rotation>

h+2

h+2

Restore AVL property (Case 2)

» Further examine the subtree T2

» A node is inserted either in T2a or T2b

h+2

2a

2b

h+1

h+2

Restore AVL property (Case 2)

» Relocate node x, y and z

» From BST property, we have
Tl <y<T20<z<T2b<x<T3

h+1

Double Left Rotation>

Al

h+1

h+1

Restore AVL property (Case 3)

» Symmetric case as case 2

»...Occurs if we insert a node in T2a or T2b

Double Right Rotation>

A

h+1

h+1

2a 2b

Why it Is called “Double” rotation?e

» Double Left Rotation is equivalent to two single
rotations

» Single Left Rotation aty
» Then, Single Right Rotation at x
» Similarly, Double Right Rotation is equivalent to
» Single Right Rotatfion aty
» Then, Single Left Rotation at x

Why it Is called “Double” rotation?e

/"
‘ (o\ ‘ Single Left Rotation(y) Q’
s 'h A ‘5 | lh . 28 A A

h+1

Single Right Rofa'tion(x)l

» N+l X " h+1
Double Left Rotation(x) Ih/T\ |or 2a 2b |or T3 |h
h-1 h-1

Insertion iINn AVL Tree —

Time Complexity

» Time complexity
» Find the location to insert
» Oflogn)
» Checking and rotation (if needed) for a node
» O(1)
» Checking and rotation for all ancestors of the inserted node
» Oflogn)
» Overall, time complexity of insertion is O(log n)

Confinue to examine its ancestorse

» After arotation, it is easy to see that the AVL
property is fixed at the violated node x

» Recall that the AVL property can only be violated at
ancestors of the inserted node

» Then, shall we continue to examine the ancestors of x2
» NoO

Confinue to examine its ancestorse

» We can study all 4 cases, but let’s consider case |
here

» If node xis the root, clearly no further examination is
needed

» Otherwise, we can assume node x has a parent (say,
node v)

Confinue to examine its ancestorse

Single Right Rotation(x)
>

h+3

or
h+4

Confinue to examine its ancestorse

» Innodev

» No violation of AVL property in node v after rotation
AND

» Height of node v before and after insertion (with
rotation) remains constant (either h+3 or h+4)

= Therefore the AVL property will not be violated in the
parent (or any ancestor) of node v

» Therefore, no further examination is needed

Summary: Insertion in AVL tree

» Perform BSTinsertion h(xz) = max{h(xz.left), h(z.right)} + 1
» For each ancestor x of the inserted node,
» Update its height by
» If AVL property is violated at node x
» If h(x.left) = h(x)-1 (i.e. h(x.right) = h(x)-3)
» If h(x.left.left) = h(x)-2 =» Single Right Rotation(x) [case 1]
» Else If h(x.left.right) = h(x)-2 = Double Left Rotation(x) [case 2]
» If h(right(x)) = h(x)-1
» If h(x.right.left) = h(x)-2 =& Double Right Rotatfion(x) [case 3]
» Else If h(x.right.right) = h(x)-2 = Single Left Rotation(x) [case 4]
» Finish // early termination
» Caution: don't forget

» Rotation may change x, so remember to connect the resulting
tree to x.parent

» Update the height of nodes involved in rotations

Review: Deletion in BST

» There are 3 cases
» Deleted node is a leaf
» Deleted node has one child

» Deleted node has two children =+-

@0 ‘A =

Deletion in AVL Tree

» Perform BST deletion

» Similar to insertion, we have to restore the AVL
property after deletion

Which nodes may violate

AVL propertye

» Recall the three cases

» Deleted node is a leaf
» Height of x may be modified

» Deleted node has one child
» Height of x may be modified

» Deleted node has two children

» Height of the parent of the minimum node of right subtree of x may
be modified

» And the height of all ancestors of the
altered node may need to be update

» As before, consider node x is the lowest node
that violate the AVL property after deletion

Restore AVL property (Case 0)

» A node is deleted in T2

» AVL property cannot be violated at
h+1

node x l
or /T1 T2 h+1

» The height of T2 can be decreased by at most 1 after h
deletion

» AVL property can only be violated
If the height of T2 is less than that of
T1 by 1 originally, and a node is
deleted from T2 to make T2 even

shorter by 1

» Symmetrically, similar case for T1

h+2/ T1 T2 |h+1

h+2

Restore AVL property (Case 1)

delete ,

|h+ T1 T2 |
\

or
h+1

Restore AVL property (Case 1)

» Swap node x and node y

» After swapping, the subtrees T1, T2 and T3 must be in
their final position

» From BST property, we have T1 <y <T2<x<T3< ...

Single Right Rotation> G A
& .

h h+1 or

h h h+2
h+1/T1 T2\ |or or h
y

h+1 h+

h+2

Restore AVL property (Case 4)

» Symmetric case as case |

» Occuwurs if we delete a node from T1

Single Left Rotation>

h h+1
h+2 or
h h+2
or T2 T3\ h+1 h
l“” l '
\j \j

Restore AVL property (Case 2)

» Single rotation may also fail as in deletion

» |n this case, we need double rotation

Single Right Rotation>

A
lh Ih
h+2
'h T1 T2 'h+1 h+1'

h+2

h+2

Restore AVL property (Case 2)

» Further examine the subtree T2
» The height of T2a and T2b can either be h or h-1

h+2

A

2a

2b

h+1

Restore AVL property (Case 2)

» Swap the order of x, vy, z, so that two of them are
children of the other one

A

2a

h+1

Double Left Rotation>

Al

h+1

A

h+1

Restore AVL property (Case 3)

» Symmetric case as case 2

»-..Occurs if we delete a node from T1

2a

2b

Double Right Rotation>

h+2

h+1

h+1

Summary: Restore AVL

property

» After deletion, you may need to check the AVL
property for all ancestors of the last deleted node

» If AVL property violated, you may need to perform
either single rotation or double rotation to fix it

Deletion In AVL Tree —

Time Complexity

» Time complexity
» Find the location to delete
» Oflogn)
» Checking and rotation (if needed) for a node
» O(1)
» Checking and rotation for all ancestors of the last deleted node
» O(logn)
» Overall, time complexity of deletion is O(log n)

Confinue to examine its ancestorse

» After arotation, it is easy to see that the AVL
property is fixed at the violated node x

» Could we stop checking after one rotation, as in
insertione

» NoO

h+3

h+2

Confinue to examine its ancestorse

» Let's consider the following counter-example

» A node is delefted from T3

Single Right Rotation(xz

h+2

Continue examine its ancestorse

» Indeed, all kinds of rotations also need further
examination until we reach the root

» But, anyway, the time complexity of deletion is still
Of(log n)

Summary: Deletion in AVL tree

» Perform BST delefion h(xz) = max {h(xz.left), h(z.right)} 4+ 1
» For each ancestor x of the last deleted node,
» Update its height by
» If AVL property is violated at node x
» If h(x.left) = h(x)-1 (i.e. h(x.right) = h(x)-3)
» If h(x.left.left) = h(x)-2 =» Single Right Rotation(x) [case 1]
» Else If h(x.left.right) = h(x)-2 = Double Left Rotation(x) [case 2]
» If h(right(x)) = h(x)-1
» If h(x.right.left) = h(x)-2 =& Double Right Rotatfion(x) [case 3]
» Else If h(x.right.right) = h(x)-2 = Single Left Rotation(x) [case 4]
» // cannot early termination, until we reach the root
» Caution: don't forget

» Rotation may change x, so remember to connect the resulting
tree to x.parent

» Update the height of nodes involved in rotations

