
AVL Tree

 Searching

 Finding min/max

 Insertion

 Deletion

لدكتورا

اثير العاني

AVL Tree

 AVL Tree is a binary search tree that satisfies

 For each node, the height of the left and right subtrees can
differ by at most 1

 Recall that the height of a node is defined as the length of
the longest path from that node to a leaf node

 Define the height of an empty tree to be -1 for convenience

 Usually, the height of every node are stored in the
implementation

 A tree satisfying this property can be proven height = O(log n),
since it is an almost balanced tree

 Fast operations (search, insert, delete) can be supported

AVL Tree Example

 Which of the following is an AVL tree?

10

6

1

8

15

18

13

no

10

6

1

8

15

13

18

no

(this is not a BST)

13

6

1

8

15

18

10

yes

AVL Tree - Operations

 Operations we will consider in this tutorial

 Searching

 Finding minimum/maximum

 Insertion

 Deletion

 Searching and finding min/max are the same as BST

 But now it is guaranteed to finish in O(log n) time

Insertion in AVL Tree

 Basically, insertion can be done as in BST

 Eg. Insert 7 and 14 into the following tree

13

6

1

8

15

18

10

Insert 7
13

6

1

8

15

18

10

7

Insertion in AVL Tree

 AVL Property may be violated after insertion

 We need to restore the AVL property

13

6

1

8

15

18

10

7

Insert 14

13

6

1

8

15

18

10

7 14

Which nodes may violate

AVL property?

 Before talking about how to maintain the AVL
property, how can we tell whether the AVL property
is violated after insertion?

 Checking the height of subtrees in every node

 Too slow (O(n) time to check all nodes)

 Note that all non-ancestors nodes remain OK

 AVL property on these nodes must still be satisfied

 No need to check them

 Checking the direct parent of the inserted node?

 No, the direct parent of the inserted node should not violate
AVL property.

Which nodes may violate

AVL property?

 Checking the grandparent of the inserted node?

 Yes

 In general, checking all ancestors of the inserted node

 After insertion, the height of subtrees of ancestors are
updated

13

8

15

18

14

21

13

8

15

18

21

Insert 14

Which nodes may violate

AVL property?

 Therefore, we need to check whether the AVL

property holds for all ancestors of the inserted node

(up to the root)

 Indeed, you may skip the checking of its parent and

the inserted node itself

 If there is no ancestor violate AVL property

 We are done

 Otherwise, we need to restore the AVL property at

that node

Restore AVL property (Case 0)

 A node is inserted in T1 or T2

 AVL property cannot be violated at node x

 The height of T1 and T2 can be increased by at most 1
after insertion

 AVL property can only be violated if the height of
T1 and T2 differ by 1 originally, and an insertion is
occurred at the taller subtree to make it even
taller

x

T1 T2 hh

...

Restore AVL property (Case 1)

 A node is inserted in T1 and AVL property is violated in node x

 And we assume node x is the lowest node that violate the AVL property

x

y

T1 T2

T3 h

hh+1

h+2

...

x

y

T1 T2

T3 h

hh

h+1

...

insert

Restore AVL property (Case 1)

 Swap node x and node y

 After swapping, the subtrees T1, T2 and T3 must be in

their final position

 From BST property, we have T1 < y < T2 < x < T3 < …

x

y

T1 T2

T3 h

hh+1

h+2

...

Single Right Rotation

x

y

T1

T2 T3 hh

h+1 h+1

...

Restore AVL property (Case 4)

 Symmetric case as case 1

 Occurs if we insert a node in T3

x

y

T3

T2T1h h

h+1h+1

...

x

y

T3T2

T1h

h h+1

h+2

...

Single Left Rotation

Restore AVL property (Case 2)

 Single rotation may fail if a node is inserted in T2

 In this case, we need double rotation

x

y

T1

T2 T3 hh+1

h h+2

...

x

y

T1 T2

T3 h

h+1h

h+2

...

Single Right Rotation

Restore AVL property (Case 2)

 Further examine the subtree T2

 A node is inserted either in T2a or T2b

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

x

y

T1 T2

T3 h

h+1h

h+2

...

Restore AVL property (Case 2)

 Relocate node x, y and z

 From BST property, we have

T1 < y < T2a < z < T2b < x < T3

h

or

h-1

y

z

T1 T2a T3 h

h+1

h

...

T2b

x

h

or

h-1

h+1

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

Double Left Rotation

Restore AVL property (Case 3)

 Symmetric case as case 2

 Occurs if we insert a node in T2a or T2b

h

or

h-1

x

z

T1 T2a T3 h

h+1

h

...

T2b

y

h

or

h-1

h+1

x

y

T1

T2a

T3

h+1

h

h+2

...

T2b

z

h

Double Right Rotation

Why it is called “Double” rotation?

 Double Left Rotation is equivalent to two single

rotations

 Single Left Rotation at y

 Then, Single Right Rotation at x

 Similarly, Double Right Rotation is equivalent to

 Single Right Rotation at y

 Then, Single Left Rotation at x

Why it is called “Double” rotation?

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

Single Left Rotation(y)

h

or

h-1

y

z

T1 T2a T3 h

h+1

h

...

T2b

x

h

or

h-1

h+1

x

z

T1 T2a

T3

...

T2b

y

Single Right Rotation(x)

Double Left Rotation(x)

Insertion in AVL Tree –

Time Complexity

 Time complexity

 Find the location to insert

 O(log n)

 Checking and rotation (if needed) for a node

 O(1)

 Checking and rotation for all ancestors of the inserted node

 O(log n)

 Overall, time complexity of insertion is O(log n)

Continue to examine its ancestors?

 After a rotation, it is easy to see that the AVL

property is fixed at the violated node x

 Recall that the AVL property can only be violated at

ancestors of the inserted node

 Then, shall we continue to examine the ancestors of x?

 No

Continue to examine its ancestors?

 We can study all 4 cases, but let’s consider case 1

here

 If node x is the root, clearly no further examination is

needed

 Otherwise, we can assume node x has a parent (say,

node v)

Continue to examine its ancestors?

x

y

T1

T2 T3 hh

h+1

h+2

...

v

T4

h+1,

h+2

or

h+3

h+3

or

h+4

x

y

T1 T2

T3 h

hh

h+1

v

T4

h+2

h+1,

h+2

or

h+3

...

h+3

or

h+4

insert
h+1

x

y

T1 T2

T3 h

h

h+2

...

v

h+3

T4

h+1,

h+2

or

h+3

Single Right Rotation(x)

Continue to examine its ancestors?

 In node v

 No violation of AVL property in node v after rotation

AND

 Height of node v before and after insertion (with

rotation) remains constant (either h+3 or h+4)

 Therefore the AVL property will not be violated in the

parent (or any ancestor) of node v

 Therefore, no further examination is needed

Summary: Insertion in AVL tree

 Perform BST insertion

 For each ancestor x of the inserted node,

 Update its height by

 If AVL property is violated at node x

 If h(x.left) = h(x)-1 (i.e. h(x.right) = h(x)-3)

 If h(x.left.left) = h(x)-2  Single Right Rotation(x) [case 1]

 Else If h(x.left.right) = h(x)-2  Double Left Rotation(x) [case 2]

 If h(right(x)) = h(x)-1

 If h(x.right.left) = h(x)-2  Double Right Rotation(x) [case 3]

 Else If h(x.right.right) = h(x)-2  Single Left Rotation(x) [case 4]

 Finish // early termination

 Caution: don’t forget

 Rotation may change x, so remember to connect the resulting
tree to x.parent

 Update the height of nodes involved in rotations

Review: Deletion in BST

 There are 3 cases

 Deleted node is a leaf

 Deleted node has one child

 Deleted node has two children

target

x

T1

...

target

x

T2

...

T1

target

x

T3

...

T1 T2

min

Deletion in AVL Tree

 Perform BST deletion

 Similar to insertion, we have to restore the AVL

property after deletion

Which nodes may violate

AVL property?

 Recall the three cases

 Deleted node is a leaf
 Height of x may be modified

 Deleted node has one child
 Height of x may be modified

 Deleted node has two children
 Height of the parent of the minimum node of right subtree of x may

be modified

 And the height of all ancestors of the
altered node may need to be update

 As before, consider node x is the lowest node
that violate the AVL property after deletion

Restore AVL property (Case 0)

 A node is deleted in T2

 AVL property cannot be violated at

node x

 The height of T2 can be decreased by at most 1 after
deletion

 AVL property can only be violated

if the height of T2 is less than that of

T1 by 1 originally, and a node is

deleted from T2 to make T2 even

shorter by 1

 Symmetrically, similar case for T1

h+1

x

T2
h+1

or

h

...

T1

h+2

x

T1 T2 h+1

...

Restore AVL property (Case 1)
 A node is deleted from T3 and AVL property is violated in node x

delete

x

y

T2

T3 h+1

h+1

h+2

...

T1

h

or

h+1

delete

x

y

T2

T3 h

h+1

h+2

...

T1

h

or

h+1

Restore AVL property (Case 1)

 Swap node x and node y

 After swapping, the subtrees T1, T2 and T3 must be in

their final position

 From BST property, we have T1 < y < T2 < x < T3 < …

x

y

T1

T3 h
h

or

h+1

h+1
h+1

or

h+2

...

T2

Single Right Rotation
x

y

T2

T3 h

h

or

h+1

h+1

h+2

...

T1

Restore AVL property (Case 4)

 Symmetric case as case 1

 Occurs if we delete a node from T1

x

y

T3

T2T1h

h+1
h+1

or

h+2

...

h

or

h+1

x

y

T3T2

T1h

h

or

h+1
h+1

h+2

...

Single Left Rotation

Restore AVL property (Case 2)

 Single rotation may also fail as in deletion

 In this case, we need double rotation

x

y

T1

T2 T3 hh+1

h h+2

...

Single Right Rotation
x

y

T2

T3 h

h+1h

h+2

...

T1

Restore AVL property (Case 2)

 Further examine the subtree T2

 The height of T2a and T2b can either be h or h-1

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

x

y

T2

T3 h

h+1h

h+2

...

T1

Restore AVL property (Case 2)

 Swap the order of x, y, z, so that two of them are

children of the other one

h

or

h-1

y

z

T1 T2a T3 h

h+1

h

...

T2b

x

h

or

h-1

h+1

Double Left Rotationx

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

Restore AVL property (Case 3)

 Symmetric case as case 2

 Occurs if we delete a node from T1

h

or

h-1

x

z

T1 T2a T3 h

h+1

h

...

T2b

y

h

or

h-1

h+1

x

y

T1

T2a

T3

h+1

h

h+2

...

T2b

z

h

Double Right Rotation

Summary: Restore AVL

property

 After deletion, you may need to check the AVL

property for all ancestors of the last deleted node

 If AVL property violated, you may need to perform

either single rotation or double rotation to fix it

Deletion in AVL Tree –

Time Complexity

 Time complexity

 Find the location to delete

 O(log n)

 Checking and rotation (if needed) for a node

 O(1)

 Checking and rotation for all ancestors of the last deleted node

 O(log n)

 Overall, time complexity of deletion is O(log n)

Continue to examine its ancestors?

 After a rotation, it is easy to see that the AVL

property is fixed at the violated node x

 Could we stop checking after one rotation, as in

insertion?

 No

Continue to examine its ancestors?

 Let’s consider the following counter-example

 A node is deleted from T3

x

y

T2 T3 hh

h+1
h+2

...

T1

v

T4 h+4

x

y

T2

T3 h

hh+1

h+2

...

T1

h+3

v

T4 h+4

Single Right Rotation(x)

Continue examine its ancestors?

 Indeed, all kinds of rotations also need further

examination until we reach the root

 But, anyway, the time complexity of deletion is still

O(log n)

Summary: Deletion in AVL tree

 Perform BST deletion

 For each ancestor x of the last deleted node,

 Update its height by

 If AVL property is violated at node x

 If h(x.left) = h(x)-1 (i.e. h(x.right) = h(x)-3)

 If h(x.left.left) = h(x)-2  Single Right Rotation(x) [case 1]

 Else If h(x.left.right) = h(x)-2  Double Left Rotation(x) [case 2]

 If h(right(x)) = h(x)-1

 If h(x.right.left) = h(x)-2  Double Right Rotation(x) [case 3]

 Else If h(x.right.right) = h(x)-2  Single Left Rotation(x) [case 4]

 // cannot early termination, until we reach the root

 Caution: don’t forget

 Rotation may change x, so remember to connect the resulting
tree to x.parent

 Update the height of nodes involved in rotations

