
AVL Tree

 Searching

 Finding min/max

 Insertion

 Deletion

لدكتورا

اثير العاني

AVL Tree

 AVL Tree is a binary search tree that satisfies

 For each node, the height of the left and right subtrees can
differ by at most 1

 Recall that the height of a node is defined as the length of
the longest path from that node to a leaf node

 Define the height of an empty tree to be -1 for convenience

 Usually, the height of every node are stored in the
implementation

 A tree satisfying this property can be proven height = O(log n),
since it is an almost balanced tree

 Fast operations (search, insert, delete) can be supported

AVL Tree Example

 Which of the following is an AVL tree?

10

6

1

8

15

18

13

no

10

6

1

8

15

13

18

no

(this is not a BST)

13

6

1

8

15

18

10

yes

AVL Tree - Operations

 Operations we will consider in this tutorial

 Searching

 Finding minimum/maximum

 Insertion

 Deletion

 Searching and finding min/max are the same as BST

 But now it is guaranteed to finish in O(log n) time

Insertion in AVL Tree

 Basically, insertion can be done as in BST

 Eg. Insert 7 and 14 into the following tree

13

6

1

8

15

18

10

Insert 7
13

6

1

8

15

18

10

7

Insertion in AVL Tree

 AVL Property may be violated after insertion

 We need to restore the AVL property

13

6

1

8

15

18

10

7

Insert 14

13

6

1

8

15

18

10

7 14

Which nodes may violate

AVL property?

 Before talking about how to maintain the AVL
property, how can we tell whether the AVL property
is violated after insertion?

 Checking the height of subtrees in every node

 Too slow (O(n) time to check all nodes)

 Note that all non-ancestors nodes remain OK

 AVL property on these nodes must still be satisfied

 No need to check them

 Checking the direct parent of the inserted node?

 No, the direct parent of the inserted node should not violate
AVL property.

Which nodes may violate

AVL property?

 Checking the grandparent of the inserted node?

 Yes

 In general, checking all ancestors of the inserted node

 After insertion, the height of subtrees of ancestors are
updated

13

8

15

18

14

21

13

8

15

18

21

Insert 14

Which nodes may violate

AVL property?

 Therefore, we need to check whether the AVL

property holds for all ancestors of the inserted node

(up to the root)

 Indeed, you may skip the checking of its parent and

the inserted node itself

 If there is no ancestor violate AVL property

 We are done

 Otherwise, we need to restore the AVL property at

that node

Restore AVL property (Case 0)

 A node is inserted in T1 or T2

 AVL property cannot be violated at node x

 The height of T1 and T2 can be increased by at most 1
after insertion

 AVL property can only be violated if the height of
T1 and T2 differ by 1 originally, and an insertion is
occurred at the taller subtree to make it even
taller

x

T1 T2 hh

...

Restore AVL property (Case 1)

 A node is inserted in T1 and AVL property is violated in node x

 And we assume node x is the lowest node that violate the AVL property

x

y

T1 T2

T3 h

hh+1

h+2

...

x

y

T1 T2

T3 h

hh

h+1

...

insert

Restore AVL property (Case 1)

 Swap node x and node y

 After swapping, the subtrees T1, T2 and T3 must be in

their final position

 From BST property, we have T1 < y < T2 < x < T3 < …

x

y

T1 T2

T3 h

hh+1

h+2

...

Single Right Rotation

x

y

T1

T2 T3 hh

h+1 h+1

...

Restore AVL property (Case 4)

 Symmetric case as case 1

 Occurs if we insert a node in T3

x

y

T3

T2T1h h

h+1h+1

...

x

y

T3T2

T1h

h h+1

h+2

...

Single Left Rotation

Restore AVL property (Case 2)

 Single rotation may fail if a node is inserted in T2

 In this case, we need double rotation

x

y

T1

T2 T3 hh+1

h h+2

...

x

y

T1 T2

T3 h

h+1h

h+2

...

Single Right Rotation

Restore AVL property (Case 2)

 Further examine the subtree T2

 A node is inserted either in T2a or T2b

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

x

y

T1 T2

T3 h

h+1h

h+2

...

Restore AVL property (Case 2)

 Relocate node x, y and z

 From BST property, we have

T1 < y < T2a < z < T2b < x < T3

h

or

h-1

y

z

T1 T2a T3 h

h+1

h

...

T2b

x

h

or

h-1

h+1

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

Double Left Rotation

Restore AVL property (Case 3)

 Symmetric case as case 2

 Occurs if we insert a node in T2a or T2b

h

or

h-1

x

z

T1 T2a T3 h

h+1

h

...

T2b

y

h

or

h-1

h+1

x

y

T1

T2a

T3

h+1

h

h+2

...

T2b

z

h

Double Right Rotation

Why it is called “Double” rotation?

 Double Left Rotation is equivalent to two single

rotations

 Single Left Rotation at y

 Then, Single Right Rotation at x

 Similarly, Double Right Rotation is equivalent to

 Single Right Rotation at y

 Then, Single Left Rotation at x

Why it is called “Double” rotation?

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

Single Left Rotation(y)

h

or

h-1

y

z

T1 T2a T3 h

h+1

h

...

T2b

x

h

or

h-1

h+1

x

z

T1 T2a

T3

...

T2b

y

Single Right Rotation(x)

Double Left Rotation(x)

Insertion in AVL Tree –

Time Complexity

 Time complexity

 Find the location to insert

 O(log n)

 Checking and rotation (if needed) for a node

 O(1)

 Checking and rotation for all ancestors of the inserted node

 O(log n)

 Overall, time complexity of insertion is O(log n)

Continue to examine its ancestors?

 After a rotation, it is easy to see that the AVL

property is fixed at the violated node x

 Recall that the AVL property can only be violated at

ancestors of the inserted node

 Then, shall we continue to examine the ancestors of x?

 No

Continue to examine its ancestors?

 We can study all 4 cases, but let’s consider case 1

here

 If node x is the root, clearly no further examination is

needed

 Otherwise, we can assume node x has a parent (say,

node v)

Continue to examine its ancestors?

x

y

T1

T2 T3 hh

h+1

h+2

...

v

T4

h+1,

h+2

or

h+3

h+3

or

h+4

x

y

T1 T2

T3 h

hh

h+1

v

T4

h+2

h+1,

h+2

or

h+3

...

h+3

or

h+4

insert
h+1

x

y

T1 T2

T3 h

h

h+2

...

v

h+3

T4

h+1,

h+2

or

h+3

Single Right Rotation(x)

Continue to examine its ancestors?

 In node v

 No violation of AVL property in node v after rotation

AND

 Height of node v before and after insertion (with

rotation) remains constant (either h+3 or h+4)

 Therefore the AVL property will not be violated in the

parent (or any ancestor) of node v

 Therefore, no further examination is needed

Summary: Insertion in AVL tree

 Perform BST insertion

 For each ancestor x of the inserted node,

 Update its height by

 If AVL property is violated at node x

 If h(x.left) = h(x)-1 (i.e. h(x.right) = h(x)-3)

 If h(x.left.left) = h(x)-2 Single Right Rotation(x) [case 1]

 Else If h(x.left.right) = h(x)-2 Double Left Rotation(x) [case 2]

 If h(right(x)) = h(x)-1

 If h(x.right.left) = h(x)-2 Double Right Rotation(x) [case 3]

 Else If h(x.right.right) = h(x)-2 Single Left Rotation(x) [case 4]

 Finish // early termination

 Caution: don’t forget

 Rotation may change x, so remember to connect the resulting
tree to x.parent

 Update the height of nodes involved in rotations

Review: Deletion in BST

 There are 3 cases

 Deleted node is a leaf

 Deleted node has one child

 Deleted node has two children

target

x

T1

...

target

x

T2

...

T1

target

x

T3

...

T1 T2

min

Deletion in AVL Tree

 Perform BST deletion

 Similar to insertion, we have to restore the AVL

property after deletion

Which nodes may violate

AVL property?

 Recall the three cases

 Deleted node is a leaf
 Height of x may be modified

 Deleted node has one child
 Height of x may be modified

 Deleted node has two children
 Height of the parent of the minimum node of right subtree of x may

be modified

 And the height of all ancestors of the
altered node may need to be update

 As before, consider node x is the lowest node
that violate the AVL property after deletion

Restore AVL property (Case 0)

 A node is deleted in T2

 AVL property cannot be violated at

node x

 The height of T2 can be decreased by at most 1 after
deletion

 AVL property can only be violated

if the height of T2 is less than that of

T1 by 1 originally, and a node is

deleted from T2 to make T2 even

shorter by 1

 Symmetrically, similar case for T1

h+1

x

T2
h+1

or

h

...

T1

h+2

x

T1 T2 h+1

...

Restore AVL property (Case 1)
 A node is deleted from T3 and AVL property is violated in node x

delete

x

y

T2

T3 h+1

h+1

h+2

...

T1

h

or

h+1

delete

x

y

T2

T3 h

h+1

h+2

...

T1

h

or

h+1

Restore AVL property (Case 1)

 Swap node x and node y

 After swapping, the subtrees T1, T2 and T3 must be in

their final position

 From BST property, we have T1 < y < T2 < x < T3 < …

x

y

T1

T3 h
h

or

h+1

h+1
h+1

or

h+2

...

T2

Single Right Rotation
x

y

T2

T3 h

h

or

h+1

h+1

h+2

...

T1

Restore AVL property (Case 4)

 Symmetric case as case 1

 Occurs if we delete a node from T1

x

y

T3

T2T1h

h+1
h+1

or

h+2

...

h

or

h+1

x

y

T3T2

T1h

h

or

h+1
h+1

h+2

...

Single Left Rotation

Restore AVL property (Case 2)

 Single rotation may also fail as in deletion

 In this case, we need double rotation

x

y

T1

T2 T3 hh+1

h h+2

...

Single Right Rotation
x

y

T2

T3 h

h+1h

h+2

...

T1

Restore AVL property (Case 2)

 Further examine the subtree T2

 The height of T2a and T2b can either be h or h-1

x

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

x

y

T2

T3 h

h+1h

h+2

...

T1

Restore AVL property (Case 2)

 Swap the order of x, y, z, so that two of them are

children of the other one

h

or

h-1

y

z

T1 T2a T3 h

h+1

h

...

T2b

x

h

or

h-1

h+1

Double Left Rotationx

y

T1

T2a

T3 h

h+1
h

h+2

...

T2b

z

Restore AVL property (Case 3)

 Symmetric case as case 2

 Occurs if we delete a node from T1

h

or

h-1

x

z

T1 T2a T3 h

h+1

h

...

T2b

y

h

or

h-1

h+1

x

y

T1

T2a

T3

h+1

h

h+2

...

T2b

z

h

Double Right Rotation

Summary: Restore AVL

property

 After deletion, you may need to check the AVL

property for all ancestors of the last deleted node

 If AVL property violated, you may need to perform

either single rotation or double rotation to fix it

Deletion in AVL Tree –

Time Complexity

 Time complexity

 Find the location to delete

 O(log n)

 Checking and rotation (if needed) for a node

 O(1)

 Checking and rotation for all ancestors of the last deleted node

 O(log n)

 Overall, time complexity of deletion is O(log n)

Continue to examine its ancestors?

 After a rotation, it is easy to see that the AVL

property is fixed at the violated node x

 Could we stop checking after one rotation, as in

insertion?

 No

Continue to examine its ancestors?

 Let’s consider the following counter-example

 A node is deleted from T3

x

y

T2 T3 hh

h+1
h+2

...

T1

v

T4 h+4

x

y

T2

T3 h

hh+1

h+2

...

T1

h+3

v

T4 h+4

Single Right Rotation(x)

Continue examine its ancestors?

 Indeed, all kinds of rotations also need further

examination until we reach the root

 But, anyway, the time complexity of deletion is still

O(log n)

Summary: Deletion in AVL tree

 Perform BST deletion

 For each ancestor x of the last deleted node,

 Update its height by

 If AVL property is violated at node x

 If h(x.left) = h(x)-1 (i.e. h(x.right) = h(x)-3)

 If h(x.left.left) = h(x)-2 Single Right Rotation(x) [case 1]

 Else If h(x.left.right) = h(x)-2 Double Left Rotation(x) [case 2]

 If h(right(x)) = h(x)-1

 If h(x.right.left) = h(x)-2 Double Right Rotation(x) [case 3]

 Else If h(x.right.right) = h(x)-2 Single Left Rotation(x) [case 4]

 // cannot early termination, until we reach the root

 Caution: don’t forget

 Rotation may change x, so remember to connect the resulting
tree to x.parent

 Update the height of nodes involved in rotations

