## $M$-Way Trees

- In this topic we will look at:
- In-order traversals of binary trees
- Limitations of in-order traversals with $n$-ary trees
- Introduction to $M$-way trees
- In-order traversals of $M$-way trees


## In-order Traversals

- Two depth-first traversals:
- Pre-order
- Post-order
- First and last visits during an Euler walk


## In-order Traversals

- For binary trees, there is a third intermediate visit
- An in-order depth-first traversal



## In-order Traversals

- This visits a binary search tree in order


A, B, C, D, E, F, G, H, I, J

## In-order Traversals

- Printing an expression tree using in-fix notation

$(3 x+5+y)(z+7)$


## Application

```
class Algebraic;
void pretty_print( Algebraic * parent ) {
    if (!leaf() ) {
        // If we are printing an operator (not a leaf node) then
        // we want to print an opening parenthesis if the parent
        // operator has higher precedence, e.g.,
        // * +
        // + y -> (x+5) y * y -> 5x + y
        // x 5 5 x
        if ( parent->precedence() > precedence() ) {
            cout << "(";
        } // pre-order visit
        left_tree->pretty_print( this ); // traverse left tree
    }
```


## Application

```
// If we are printing a multiplication, then we will
// print a star iff both sub-trees are numeric values, e.g.
// * * *
// 3 y m 3y 4 4 + > 4(x+5) 3 5 5 m 3*5
// x 5
if ( is_multiplication() ) {
        if ( left_tree->numeric() && right_tree->numeric() ) {
            cout << "*";
        }
} else {
    cout << this; // print this object
}
```


## Application

```
if ( !leaf() ) {
    right_tree->pretty_print( this ); // traverse right sub-tree
    // If we are printing an operator (not a leaf node) then
    // we want to print an opening parenthesis if the parent
    // operator has higher precedence, e.g.,
    | * +
    // + y -> (x+5) y % y > 5x + y
    // x 5
    if ( parent->precedence() > precedence() ) {
            cout << ")";
    } // post-order visit
}
```


## 3-Way Trees

- Suppose we had a node storing two values and with three sub-trees: template<class Object>
class Three_way_node \{
Three_way_node *left_tree;
Object first_element;
Three_way_node *middle_tree;
Object second_element;
Three_way_node *right_tree;
// ...
\};



## 3-Way Trees

- We will require that
- All sub-trees are 3-way trees
- The left sub-tree contains items less than the $1^{\text {st }}$ element
- The middle sub-tree contains items between the two elements
- The right sub-tree contains items greater than the $2^{\text {nd }}$ element


## 3-Way Trees

- One immediate consequence is that the first element is less than the second
- Problem: we may not be able to fill both entries in a node:
- Require that the right sub-tree is empty if the node contains only one element (the first)


## 3-Way Trees

- Suppose we had a node storing two values and with three sub-trees:
template<class Object>
class Three_way_node \{
Three_way_node *left_tree;
Object first_element;
Three_way_node *middle_tree;
Object second_element;
Three_way_node *right_tree;
int num_elements; \# 1 or 2
// ...
\};


## 3-Way Trees

- An example of a 3-way tree:



## 3-Way Tree

- An in-order traversal now makes sense:


1225681719232738415359658994

## M-Way Trees

- Suppose we had a node storing $M-1$ values and with $M$ sub-trees:
template<class Object>
class M_way_node \{
private:
int M ;
int num_elements;
Object *elements;
M_way_node **subtrees;
// for an array of $M$ pointers to M-way nodes
public:
// ...
\};


## $M$-Way Trees

```
template<class Object>
M_way_node<Object>: :M_way_node( const Object &obj, int m ):
        M(m) ,
        num_elements( 1 ),
    elements( new Object[M - 1] ),
    subtrees( new M_way_node<Object> *[M] )
{
    elements[0] = obj;
    for ( int i = 0; i < M; ++i ) {
        subtrees[i] = 0;
    }
}
```


## $M$-Way Trees

- Question:
- What is the maximum number of elements which may be stored in an $M$-way tree of height $h$ ?
- Consider the 3-way trees and, if possible, generalize


## M-Way Trees

- Examining these perfect 3-way trees
 we get the table:

| $h$ | count | formula |
| :---: | :---: | :---: |
| 0 | 2 | $3^{1}-1$ |
| 1 | 8 | $3^{2}-1$ |
| 2 | 26 | $3^{3}-1$ |
| 3 | 80 | $3^{4}-1$ |

## M-Way Trees

- Suggested form:
- The maximum number of nodes in a perfect $M$-way tree of height $h$ is $M^{h+1}-1$
- Observations
- This is true when $M=2: 2^{h+1}-1$
- To prove that this is true in general, we will first make use of one fact...


## M-Way Trees

- We will require the following:
- the maximum number of leaf nodes in an $M$-way tree of height $h$ is $M^{h}$
- Proof (by induction):
- when $h=0$, there is $M^{0}=1$ node (a leaf node)
- assume for $h=k$ that there are $M^{k}$ leaf nodes
- for $h=k+1$, each leaf node has $M$ children:

$$
M^{k} M=M^{k+1}
$$

Q.E.D.

## $M$-Way Trees

- Similarly, we will show that the maximum number of elements which may be stored in $M$-way tree of height $h$ is
- First, when $h=0$, the formula is $M^{1}-1$ which is the maximum number of elements a single node can store


## M-Way Trees

- We will assume the statement is true for $h=k$, that is, the maximum number of elements is $M^{k+1}-1$
- A tree of height $h=k$ has $M^{k}$ leaf nodes, and therefore, if each of these have the maximum number of children $(M)$, we therefore have $M \cdot M^{k}$ leaf nodes, each of which stores $M-1$ elements


## M-Way Trees

- Therefore, the maximum number of elements stored is in a tree of height $h=k+1$ is:
- the total number of elements stored in a tree of height $h=$ $k$ plus
- M-1 for each possible sub-tree of each leaf node of height $h=k$
- That is, $M^{k+1}-1+M M^{k}(M-1)=$

$$
M^{k+1}-1+M^{k+2}-M^{k+1}-1=M^{k+2}-1
$$

## M-Way Trees

- Thus, the statement must be true for all $h>0$
- One nice consequence is that the minimum height of an $M$-way tree which stores $n$ elements is given by $\left\lfloor\log _{M}(n)\right\rfloor$


## M-Way Trees

- An $M$-way tree has the following properties:
- each node has $k$ elements where $1 \leq k<M$ and $e_{0}<\cdots<$ $e_{k-1}$
- each node has at most one $k+1$ sub-trees $\mathrm{T}_{0}, \mathrm{~T}_{1}, \ldots, \mathrm{~T}_{\mathrm{k}}$ such that:
- all elements $\varepsilon$ in the sub-tree $\mathrm{T}_{0}$ satisfy $\varepsilon<e_{0}$,
- all elements $\varepsilon$ in $\mathrm{T}_{j}(j=1, \ldots, k-1)$ satisfy:

$$
e_{j-1}<\varepsilon<e_{j}
$$

- all elements $\varepsilon$ in the sub-tree $\mathrm{T}_{\mathrm{k}}$ satisfy $\varepsilon>e_{k-1}$


## $M$-Way Trees

- Observations
- we require that the elements in a given node are filled in order
- intermediate trees may be empty
- a binary search tree is a 2 -way tree
- the minimum depth of an $M$-way tree with $n$ nodes is $\log _{M}(\mathrm{n}+1)-1$
- potentially much less depth than a binary tree


## $M$-Way Trees

- Most keys are stored in the leaves
- $M^{h}$ leaves
- A total of $M-1$ keys per leaf
- Thus

$$
(M-1) M^{h} /\left(M^{h+1}-1\right) \approx(M-1) / M
$$

## $M$-Way Trees

- A plot of the minimum height of an $M$-way tree for $M=2,3, \ldots, 20$ for up to one-million elements



## $M$-Way Trees

- Compare:
- A perfect 6-way tree with $h=2$
- 215 elements in 43 nodes
- A complete binary tree with $n=215$ and $h=7$

ת A A


## $M$-Way Trees

- Advantage:
- Shorter paths from the root
- Disadvantage:
- More complex
- Under what conditions is the additional complexity worth the effort?
- When the cost from jumping nodes is exceptionally dominant


## Summary

- In this topic, we have looked at:
- In-order depth-first traversals
- Limitations on $n$-ary trees
- $M$-way trees

