
M-Way Trees

• In this topic we will look at:

• In-order traversals of binary trees

• Limitations of in-order traversals with n-ary trees

• Introduction to M-way trees

• In-order traversals of M-way trees

الدكتور

اثير العاني

In-order Traversals

• Two depth-first traversals:

• Pre-order

• Post-order

• First and last visits during an Euler walk

In-order Traversals

• For binary trees, there is a third intermediate visit

• An in-order depth-first traversal

In-order Traversals

• This visits a binary search tree in order

A, B, C, D, E, F, G, H, I, J

In-order Traversals

• Printing an expression tree using in-fix notation

(3x + 5 + y)(z + 7)

Application

class Algebraic;

void pretty_print(Algebraic * parent) {

if (!leaf()) {

// If we are printing an operator (not a leaf node) then

// we want to print an opening parenthesis if the parent

// operator has higher precedence, e.g.,

// * +

// + y -> (x + 5) y * y -> 5x + y

// x 5 5 x

if (parent->precedence() > precedence()) {

cout << "(";

} // pre-order visit

left_tree->pretty_print(this); // traverse left tree

}

Application

// If we are printing a multiplication, then we will

// print a star iff both sub-trees are numeric values, e.g.

// * * *

// 3 y -> 3y 4 + -> 4(x + 5) 3 5 -> 3*5

// x 5

if (is_multiplication()) {

if (left_tree->numeric() && right_tree->numeric()) {

cout << "*";

}

} else {

cout << this; // print this object

}

Application

if (!leaf()) {

right_tree->pretty_print(this); // traverse right sub-tree

// If we are printing an operator (not a leaf node) then

// we want to print an opening parenthesis if the parent

// operator has higher precedence, e.g.,

// * +

// + y -> (x + 5) y * y -> 5x + y

// x 5 5 x

if (parent->precedence() > precedence()) {

cout << ")";

} // post-order visit

}

3-Way Trees

• Suppose we had a node storing two values and with three sub-trees:

template<class Object>

class Three_way_node {

Three_way_node *left_tree;

Object first_element;

Three_way_node *middle_tree;

Object second_element;

Three_way_node *right_tree;

// ...

};

left_tree middle_tree right_tree

left_element right_element

3-Way Trees

• We will require that

• All sub-trees are 3-way trees

• The left sub-tree contains items less than the 1st element

• The middle sub-tree contains items between the two

elements

• The right sub-tree contains items greater than the 2nd

element

3-Way Trees

• One immediate consequence is that the first element

is less than the second

• Problem: we may not be able to fill both entries in a

node:

• Require that the right sub-tree is empty if the node

contains only one element (the first)

3-Way Trees

• Suppose we had a node storing two values and with three sub-trees:

template<class Object>

class Three_way_node {

Three_way_node *left_tree;

Object first_element;

Three_way_node *middle_tree;

Object second_element;

Three_way_node *right_tree;

int num_elements; # 1 or 2

// ...

};

3-Way Trees

• An example of a 3-way tree:

3-Way Tree

• An in-order traversal now makes sense:

1 2 5 6 8 17 19 23 27 38 41 53 59 65 89 94

M-Way Trees

• Suppose we had a node storing M – 1 values and with M sub-trees:

template<class Object>

class M_way_node {

private:

int M;

int num_elements;

Object *elements;

M_way_node **subtrees;

// for an array of M pointers to M-way nodes

public:

// ...

};

M-Way Trees

template<class Object>

M_way_node<Object>::M_way_node(const Object &obj, int m):

M(m),

num_elements(1),

elements(new Object[M – 1]),

subtrees(new M_way_node<Object> *[M])

{

elements[0] = obj;

for (int i = 0; i < M; ++i) {

subtrees[i] = 0;

}

}

M-Way Trees

• Question:

• What is the maximum number of elements which may be

stored in an M-way tree of height h?

• Consider the 3-way trees and, if possible, generalize

M-Way Trees
• Examining these perfect 3-way trees

we get the table:
h count formula

0 2 31 – 1

1 8 32 – 1

2 26 33 – 1

3 80 34 – 1

M-Way Trees

• Suggested form:

• The maximum number of nodes in a perfect M-way tree

of height h is Mh + 1 – 1

• Observations

• This is true when M = 2: 2h + 1 – 1

• To prove that this is true in general, we will first

make use of one fact...

M-Way Trees

• We will require the following:

• the maximum number of leaf nodes in an
M-way tree of height h is Mh

• Proof (by induction):

• when h = 0, there is M0 = 1 node (a leaf node)

• assume for h = k that there are Mk leaf nodes

• for h = k + 1, each leaf node has M children:

Mk M = Mk + 1

Q.E.D.

M-Way Trees

• Similarly, we will show that the maximum number of

elements which may be stored in M-way tree of

height h is

• First, when h = 0, the formula is M1 – 1 which is the

maximum number of elements a single node can

store

M-Way Trees

• We will assume the statement is true for

h = k, that is, the maximum number of elements is

Mk + 1 – 1

• A tree of height h = k has Mk leaf nodes, and

therefore, if each of these have the maximum

number of children (M), we therefore have M·Mk

leaf nodes, each of which stores M – 1 elements

M-Way Trees

• Therefore, the maximum number of elements stored
is in a tree of height
h = k + 1 is:

• the total number of elements stored in a tree of height h =
k plus

• M – 1 for each possible sub-tree of each leaf node of
height h = k

• That is, Mk + 1 – 1 + MMk(M – 1) =
Mk + 1 – 1 + Mk + 2 – Mk + 1 – 1 = Mk + 2 – 1

M-Way Trees

• Thus, the statement must be true for all

h > 0

• One nice consequence is that the minimum height of

an M-way tree which stores n elements is given by

⌊logM(n)⌋

M-Way Trees

• An M-way tree has the following properties:

• each node has k elements where 1 ≤ k < M and e0 < ⋅⋅⋅ <
ek - 1

• each node has at most one k + 1 sub-trees T0, T1, ..., Tk

such that:

• all elements e in the sub-tree T0 satisfy e < e0,

• all elements e in Tj (j = 1, ..., k – 1) satisfy:

ej – 1 < e < ej

• all elements e in the sub-tree Tk satisfy e > ek – 1

M-Way Trees

• Observations

• we require that the elements in a given node are filled in

order

• intermediate trees may be empty

• a binary search tree is a 2-way tree

• the minimum depth of an M-way tree with n nodes is

logM(n + 1) – 1

• potentially much less depth than a binary tree

M-Way Trees

• Most keys are stored in the leaves

• Mh leaves

• A total of M – 1 keys per leaf

• Thus

(M – 1)Mh/(Mh + 1 – 1) ≈ (M – 1)/M

M-Way Trees

• A plot of the minimum height of an M-way tree for

M = 2, 3, ..., 20 for up to one-million elements

M-Way Trees

• Compare:

• A perfect 6-way tree with h = 2

• 215 elements in 43 nodes

• A complete binary tree with n = 215 and h = 7

M-Way Trees

• Advantage:

• Shorter paths from the root

• Disadvantage:

• More complex

• Under what conditions is the additional complexity
worth the effort?

• When the cost from jumping nodes is exceptionally
dominant

Summary

• In this topic, we have looked at:

• In-order depth-first traversals

• Limitations on n-ary trees

• M-way trees

