
M-Way Trees

• In this topic we will look at:

• In-order traversals of  binary trees

• Limitations of  in-order traversals with n-ary trees

• Introduction to M-way trees

• In-order traversals of  M-way trees
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In-order Traversals

• Two depth-first traversals:

• Pre-order

• Post-order

• First and last visits during an Euler walk



In-order Traversals

• For binary trees, there is a third intermediate visit

• An in-order depth-first traversal



In-order Traversals

• This visits a binary search tree in order

A, B, C, D, E, F, G, H, I, J



In-order Traversals

• Printing an expression tree using in-fix notation

(3x + 5 + y)(z + 7)



Application

class Algebraic;

void pretty_print( Algebraic * parent ) {

if ( !leaf() ) {

// If we are printing an operator (not a leaf node) then

// we want to print an opening parenthesis if the parent

// operator has higher precedence, e.g.,

//      *                              +

//   +      y   ->  (x + 5) y      *       y   ->  5x + y

// x   5                         5   x

if ( parent->precedence() > precedence() ) {

cout << "(";

}  // pre-order visit

left_tree->pretty_print( this ); // traverse left tree

}



Application

// If we are printing a multiplication, then we will

// print a star iff both sub-trees are numeric values, e.g.

//      *                 *                       *

//    3   y  ->  3y    4     +   ->  4(x + 5)   3   5 -> 3*5

//                         x   5

if ( is_multiplication() ) {

if ( left_tree->numeric() && right_tree->numeric() ) {

cout << "*";

}

} else {

cout << this;  // print this object

}



Application

if ( !leaf() ) {

right_tree->pretty_print( this ); // traverse right sub-tree

// If we are printing an operator (not a leaf node) then

// we want to print an opening parenthesis if the parent

// operator has higher precedence, e.g.,

//      *                                +

//   +      y   ->  (x + 5) y        *       y   ->  5x + y

// x   5                           5   x

if ( parent->precedence() > precedence() ) {

cout << ")";

}  // post-order visit

}



3-Way Trees

• Suppose we had a node storing two values and with three sub-trees:

template<class Object>

class Three_way_node {

Three_way_node   *left_tree;

Object            first_element;

Three_way_node   *middle_tree;

Object            second_element;

Three_way_node   *right_tree;

// ...

};

left_tree middle_tree right_tree

left_element right_element



3-Way Trees

• We will require that

• All sub-trees are 3-way trees

• The left sub-tree contains items less than the 1st element

• The middle sub-tree contains items between the two 

elements

• The right sub-tree contains items greater than the 2nd

element



3-Way Trees

• One immediate consequence is that the first element 

is less than the second

• Problem:  we may not be able to fill both entries in a 

node:

• Require that the right sub-tree is empty if  the node 

contains only one element (the first)



3-Way Trees

• Suppose we had a node storing two values and with three sub-trees:

template<class Object>

class Three_way_node {

Three_way_node   *left_tree;

Object            first_element;

Three_way_node   *middle_tree;

Object            second_element;

Three_way_node   *right_tree;

int num_elements;   # 1 or 2

// ...

};



3-Way Trees

• An example of  a 3-way tree:



3-Way Tree

• An in-order traversal now makes sense:

1  2  5  6  8  17  19  23  27  38  41  53  59  65  89  94



M-Way Trees

• Suppose we had a node storing M – 1 values and with M sub-trees:

template<class Object>

class M_way_node {

private:

int M;

int num_elements;

Object *elements;

M_way_node **subtrees;

// for an array of M pointers to M-way nodes

public:

// ...

};



M-Way Trees

template<class Object>

M_way_node<Object>::M_way_node( const Object &obj, int m ):

M( m ),

num_elements( 1 ),

elements( new Object[M – 1] ),

subtrees( new M_way_node<Object> *[M] )

{

elements[0] = obj;

for ( int i = 0; i < M; ++i ) {

subtrees[i] = 0;

}

}



M-Way Trees

• Question:

• What is the maximum number of  elements which may be 

stored in an M-way tree of  height h?

• Consider the 3-way trees and, if  possible, generalize



M-Way Trees
• Examining these perfect 3-way trees

we get the table:
h count formula

0 2 31 – 1

1 8 32 – 1

2 26 33 – 1

3 80 34 – 1



M-Way Trees

• Suggested form:

• The maximum number of  nodes in a perfect M-way tree 

of  height h is Mh + 1 – 1

• Observations

• This is true when M = 2:  2h + 1 – 1

• To prove that this is true in general, we will first 

make use of  one fact...



M-Way Trees

• We will require the following:

• the maximum number of  leaf  nodes in an
M-way tree of  height h is Mh

• Proof  (by induction):

• when h = 0, there is M0 = 1 node (a leaf  node)

• assume for h = k that there are Mk leaf  nodes

• for h = k + 1, each leaf  node has M children:

Mk M = Mk + 1

Q.E.D.



M-Way Trees

• Similarly, we will show that the maximum number of  

elements which may be stored in M-way tree of  

height h is 

• First, when h = 0, the formula is M1 – 1 which is the 

maximum number of  elements a single node can 

store



M-Way Trees

• We will assume the statement is true for

h = k, that is, the maximum number of  elements is 

Mk + 1 – 1

• A tree of  height h = k has Mk leaf  nodes, and 

therefore, if  each of  these have the maximum 

number of  children (M), we therefore have M·Mk

leaf  nodes, each of  which stores M – 1 elements



M-Way Trees

• Therefore, the maximum number of  elements stored 
is in a tree of  height
h = k + 1 is:

• the total number of  elements stored in a tree of  height h =
k plus

• M – 1 for each possible sub-tree of  each leaf  node of  
height h = k

• That is, Mk + 1 – 1 + MMk(M – 1) =
Mk + 1 – 1 + Mk + 2 – Mk + 1 – 1 = Mk + 2 – 1 



M-Way Trees

• Thus, the statement must be true for all

h > 0

• One nice consequence is that the minimum height of  

an M-way tree which stores n elements is given by 

⌊logM(n)⌋



M-Way Trees

• An M-way tree has the following properties:

• each node has k elements where 1 ≤  k < M and e0 < ⋅⋅⋅ < 
ek - 1

• each node has at most one k + 1 sub-trees  T0, T1, ..., Tk

such that:

• all elements e in the sub-tree T0 satisfy e < e0,

• all elements e in Tj ( j = 1, ..., k – 1) satisfy:

ej – 1 < e < ej

• all elements e in the sub-tree Tk satisfy e > ek – 1



M-Way Trees

• Observations

• we require that the elements in a given node are filled in 

order

• intermediate trees may be empty

• a binary search tree is a 2-way tree

• the minimum depth of  an M-way tree with n nodes is 

logM( n + 1 ) – 1

• potentially much less depth than a binary tree



M-Way Trees

• Most keys are stored in the leaves

• Mh leaves

• A total of  M – 1 keys per leaf

• Thus

(M – 1)Mh/(Mh + 1 – 1) ≈ (M – 1)/M



M-Way Trees

• A plot of  the minimum height of  an M-way tree for 

M = 2, 3, ..., 20 for up to one-million elements



M-Way Trees

• Compare:

• A perfect 6-way tree with h = 2

• 215 elements in 43 nodes

• A complete binary tree with n = 215 and h = 7



M-Way Trees

• Advantage:

• Shorter paths from the root

• Disadvantage:

• More complex

• Under what conditions is the additional complexity 
worth the effort?

• When the cost from jumping nodes is exceptionally 
dominant



Summary

• In this topic, we have looked at:

• In-order depth-first traversals

• Limitations on n-ary trees

• M-way trees


