M-Way Trees

* In this topic we will look at:

* In-order traversals of binary trees

* Limitations of in-order traversals with N-ary trees .

° Introduction to M-way trees

* In-order traversals of M-way trees

BTSN

In-order Traversals

* Two depth-first traversals:
* Pre-order

* Post-order

* TFirst and last visits during an Euler walk

In-order Traversals

* TFor binary trees, there is a third intermediate visit

* An n-order depth-first traversal

|
|
|
|

In-order Traversals

* This visits a binary search tree in order

A) B) C) D) E) F) G) H) I)J

In-order Traversals

* Printing an expression tree using in-fix notation

(D (2T

Application

class Al

gebraic;

void pretty print(Algebraic * parent) {

if |

tleaf ()) {
// If we are printing an operator (not a leaf node) then
// we want to print an opening parenthesis if the parent
// operator has higher precedence, e.g.,
// & +
// + y S (SR RS) SRV * y -> 5x +y
0/ a8 BNS SR

if (parent->precedence() > precedence()) {
COUIRSS IR (G-

} // pre-order visit

W
.

Application

// If we are printing a multiplication, then we will

// print a star iff both sub-trees are numeric values, e.g.
// * * *

// 3 AL Ser i EY 4 + -> 4(x + 5) 3 SR=>13*%5
// XRS5

if (is multiplication()) {
if (left tree->numeric() && right tree->numeric()) {
CoutRCRLAILS
}
} else {

cout << this; // print this object

Application

if ('leaf()) {

right tree->pretty print(this); // traverse right sub-tree

// If we are printing an operator (not a leaf node) then
// we want to print an opening parenthesis if the parent
// operator has higher precedence, e.g.,

// % ik

o/ + vy => (x + 5) vy * y
// x 5 5 X

=508 DR,

if (parent->precedence() > precedence()) {
cout << ")";

} // post-order visit

3-Way Trees

* Suppose we had a node storing two values and with three sub-trees:

template<class Object>

class Three way node {

Three way node
Object
Three way node
Object
Three way node

sl

Slefthbreat;
first element;
*middle tree;
second element;

Xrightitrees

left element right element

left tree middle tree right tree

/ | - -—*
;s v ' '

3-Way Trees

* We will require that

* All sub-trees are 3-way trees

* The left sub-tree contains items less than the 15t element

* The middle sub-tree contains items between the two
elements

* 'The right sub-tree contains items greater than the 274
element

3-Way Trees

* One immediate consequence 1s that the first element

is less than the second |
* Problem: we may not be able to fill both entries in a .

node:

* Require that the right sub-tree is empty if the node
contains only one element (the first)

3-Way Trees i

* Suppose we had a node storing two values and with three sub-trees:

template<class Object>

class Three way node ({

Three_ way node *left tree;

Object first element;
Three way node *middle tree;
Object second element;
Three way node *right tree;

int num elements; # 1 or 2

Wk

3-Way Trees

* An example of a 3-way tree:

23(41
5|17 27|38 65
112]6]8]19 53(59||89(94

3-Way Tree

°* An in-order traversal now makes sense:

23

41

27

38 65

53[59(189

94

1.2 536 & 1S 19 28 Zess el e 55565869«

M-Way Trees

* Suppose we had a node storing M — 1 values and with M sub-trees:

template<class Object>
class M way node ({
private:
int M;
int num elements;
Object *elements;
M way node **subtrees;
// for an array of M pointers to M-way nodes
public:
//

M-Way Trees

template<class Object>
M way node<Object>::M way node(const Object &obj, int m):
M(m),

num elements(1),

elements(new Object[M - 1]),

subtrees(new M way node<Object> *[M])

elements[0] = obj;

P =5) <t (N 5 o B NG BN 6 Bt B . SRR B |

subtrees[i] = O0;

M-Way Trees

* Question:

* What 1s the maximum number of elements which may be
stored in an M-way tree of height h?

* Consider the 3-way trees and, if possible, generalize

M-Way Trees

* Examining these perfect 3-way trees

we get the table:
h | count | formula
0 2 311
1 8 32-1
2 26 3-1
3 80 3*-1

M-Way Trees

* Suggested form: |
* The maximum number of nodes in a perfect M-way tree .

of height h is Mh+1_1

* Observations

° This is true when M =2; 2h+1_1

* To prove that this 1s true in general, we will first
make use of one fact...

M-Way Trees

* We will require the following:

* the maximum number of leaf nodes in an

M-way tree of height h is M"

* Proof (by induction):
* when h =0, there is MY = 1 node (a leaf node)
* assume for h = K that there are M¥ leaf nodes
* forh=Kk+ 1, each leaf node has M children:
|\/|k M = Mk+ 1
Q.E.D.

M-Way Trees

* Similarly, we will show that the maximum number of

height h 1s

* First, when h =0, the formula is M! — 1 which is the
maximum number of elements a single node can

elements which may be stored in M-way tree of .

store

M-Way Trees

* We will assume the statement is true for

h = K, that is, the maximum number of elements is

Mk+1_1
* A tree of height h =K has M¥ leaf nodes, and

therefore, if each of these have the maximum
number of children (M), we therefore have M-MX
leaf nodes, each of which stores M — 1 elements

M-Way Trees

* Therefore, the maximum number of elements stored
is in a tree of height

h=k+1is:

* the total number of elements stored in a tree of height h =

k plus

* M —1 for each possible sub-tree of each leaf node of
height h = k
o Thatis, M<*1— 1 + MMY(M — 1) =
Mk+l_1+MKt2_MKk*1_1=MK*2_1

M-Way Trees

* Thus, the statement must be true for all

h>0

* One nice consequence 1s that the minimum height of
an M-way tree which stores N elements is given by

[logw(n)]

M-Way Trees

* An M-way tree has the following properties:
* ceach node has k elements where 1 < k< M and ErSatas
Ck-1

* each node has at most one K + 1 sub-trees T,, Ty, ..., Ty
such that:

° all elements ¢in the sub-tree T satisty &< €,

* allelements £in T; (J =1, ..., k= 1) satisfy:
ej_l < & < eJ

° all elements ¢in the sub-tree T, satisty £>¢€, ;

M-Way Trees

* (Observations

* we require that the elements in a given node are filled in .

order

* intermediate trees may be empty
* a binary search tree is a 2-way tree

* the minimum depth of an M-way tree with N nodes is

logy(n+1)-1

* potentially much less depth than a binary tree

M-Way Trees

* Most keys are stored in the leaves
* MM Jeaves

* A total of M —1 keys per leaf

. [haais
(M= DMY(MP*+1— 1) = (M — 1)/M

M-Way Trees

* A plot of the minimum height of an M-way tree for
M=2,3, ..., 20 for up to one-million elements

000000000000000000000000

M-Way Trees

* Gompare:

* A petfect 6-way tree with h = 2 '
* 215 elements in 43 nodes ‘

* A complete binary tree with N =215 and h =7

T e, T e, e, e, e

M-Way Trees

* Advantage:

* Shorter paths from the root 3
* Disadvantage: .

* Mote complex

* Under what conditions 1s the additional complexity
worth the etfort?

* When the cost from jumping nodes is exceptionally
dominant

Summary

* In this topic, we have looked at:
* In-order depth-first traversals
* Limitations on N-ary trees

* M-way trees

