
Data Structures and Algorithms

Sorting

Bin Sorts

Key Points

• Quicksort

• Use for good overall performance where time is not a

constraint

• Heap Sort

• Slower than quick sort, but guaranteed O(n log n)

• Use for real-time systems where time is critical

• Functions as data types

• Argument of a function can be a function

• Enables flexible general purpose classes

• Enables table driven code

Sorting

• We now know several sorting algorithms

• Insertion O(n2)

• Bubble O(n2)

• Heap O(n log n) Guaranteed

• Quick O(n log n) Most of the time!

• Can we do any better?

Sorting - Better than O(n log n) ?

• If all we know about the keys is an ordering rule

• No!

• However,

• If we can compute an address from the key

(in constant time) then

bin sort algorithms can provide better performance

Sorting - Bin Sort

• Assume

• All the keys lie in a small, fixed range

• eg

• integers 0-99

• characters ‘A’-’z’, ‘0’-’9’

• There is at most one item with each value of the key

• Bin sort

 Allocate a bin for each value of the key

• Usually an entry in an array

 For each item,

• Extract the key

• Compute it’s bin number

• Place it in the bin

 Finished!

Sorting - Bin Sort: Analysis

• All the keys lie in a small, fixed range

• There are m possible key values

• There is at most one item with each value of the key

• Bin sort

 Allocate a bin for each value of the key O(m)

• Usually an entry in an array

 For each item, n times

• Extract the key O(1)

• Compute it’s bin number O(1)

• Place it in the bin O(1) x n  O(n)

 Finished! O(n) + O(m) = O(n+m) = O(n) if n >> m

Key

condition

Sorting - Bin Sort: Caveat

• Key Range

• All the keys lie in a small, fixed range

• There are m possible key values

• If this condition is not met, eg m >> n,

then bin sort is O(m)

• Example

• Key is a 32-bit integer, m = 232

• Clearly, this isn’t a good way to sort a few thousand integers

• Also, we may not have enough space for bins!

• Bin sort trades space for speed!

• There’s no free lunch!

Sorting - Bin Sort with duplicates

• There is at most one item with each value of the key

• Bin sort

 Allocate a bin for each value of the key O(m)

• Usually an entry in an array

• Array of list heads

 For each item, n times

• Extract the key O(1)

• Compute it’s bin number O(1)

• Add it to a list O(1) x n  O(n)

• Join the lists O(m)

• Finished! O(n) + O(m) = O(n+m) = O(n) if n >> m

Relax?

Sorting - Generalised Bin Sort

• Radix sort

• Bin sort in phases

• Example

• Phase 1 - Sort by least significant digit

36 9 0 25 1 49 64 16 81 4

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

Sorting - Generalised Bin Sort

• Radix sort - Bin sort in phases

• Phase 1 - Sort by least significant digit

• Phase 2 - Sort by most significant digit

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

0 1 2 3 4 5 6 7 8 9

0

Sorting - Generalised Bin Sort

• Radix sort - Bin sort in phases

• Phase 1 - Sort by least significant digit

• Phase 2 - Sort by most significant digit

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

0 1 2 3 4 5 6 7 8 9

0

1

Be careful to

add after anything

in the bin already!

Sorting - Generalised Bin Sort

• Radix sort - Bin sort in phases

• Phase 1 - Sort by least significant digit

• Phase 2 - Sort by most significant digit

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

0 1 2 3 4 5 6 7 8 9

0

1

81

Sorting - Generalised Bin Sort

• Radix sort - Bin sort in phases

• Phase 1 - Sort by least significant digit

• Phase 2 - Sort by most significant digit

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

0 1 2 3 4 5 6 7 8 9

0

1

8164

Sorting - Generalised Bin Sort

• Radix sort - Bin sort in phases

• Phase 1 - Sort by least significant digit

• Phase 2 - Sort by most significant digit

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

0 1 2 3 4 5 6 7 8 9

0

1

4

8164

1 2 3 4 5 6 7 8 9

816425 3616 49

Sorting - Generalised Bin Sort

• Radix sort - Bin sort in phases

• Phase 1 - Sort by least significant digit

• Phase 2 - Sort by most significant digit

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

0

0

1

4

9

Note that the 0

bin had to be

quite large!

1 2 3 4 5 6 7 8 9

816425 3616 49

Sorting - Generalised Bin Sort

• Radix sort - Bin sort in phases

• Phase 1 - Sort by least significant digit

• Phase 2 - Sort by most significant digit

0 1 2 3 4 5 6 7 8 9

0 1

81

64

4

25 36

16

9

49

0

0

1

4

9

How much

space is needed

in each phase?

n items

m bins

Sorting - Generalised Bin Sort

• Radix sort - Analysis

• Phase 1 - Sort by least significant digit

• Create m bins O(m)

• Allocate n items O(n)

• Phase 2

• Create m bins O(m)

• Allocate n items O(n)

• Final

• Link m bins O(m)

• All steps in sequence, so add

• Total O(3m+2n) O(m+n)  O(n) for m<<n

Sorting - Radix Sort - Analysis

• Radix sort - General

• Base (or radix) in each phase can be anything suitable

• Integers

• Base 10, 16, 100, …

• Bases don’t have to be the same

• Still O(n) if n >> si for all i

struct date {

int day; /* 1 .. 31 */

int month; /* 1 .. 12 */

int year; /* 0 .. 99 */

}

Phase 1 - s1=31 bins

Phase 2 - s2=12 bins

Phase 3 - s3=100 bins

Radix Sort - Analysis

• Generalised Radix Sort Algorithm

radixsort(A, n) {

for(i=0;i<k;i++) {

for(j=0;j<s[i];j++) bin[j] = EMPTY;

for(j=0;j<n;j++) {

move A[i]

to the end of bin[A[i]->fi]

}

for(j=0;j<s[i];j++)

concat bin[j] onto the end of A;

}

}

O(si)

O(n)

O(si)

For each of k radices

Radix Sort - Analysis

• Generalised Radix Sort Algorithm

radixsort(A, n) {

for(i=0;i<k;i++) {

for(j=0;j<s[i];j++) bin[j] = EMPTY;

for(j=0;j<n;j++) {

move A[i]

to the end of bin[A[i]->fi]

}

for(j=0;j<s[i];j++)

concat bin[j] onto the end of A;

}

}

O(si)

O(n)

O(si)

Clear the si bins for the ith radix

Radix Sort - Analysis

• Generalised Radix Sort Algorithm

radixsort(A, n) {

for(i=0;i<k;i++) {

for(j=0;j<s[i];j++) bin[j] = EMPTY;

for(j=0;j<n;j++) {

move A[i]

to the end of bin[A[i]->fi]

}

for(j=0;j<s[i];j++)

concat bin[j] onto the end of A;

}

}

O(si)

O(n)

O(si)
Move element A[i]

to the end of the bin addressed
by the ith field of A[i]

Radix Sort - Analysis

• Generalised Radix Sort Algorithm

radixsort(A, n) {

for(i=0;i<k;i++) {

for(j=0;j<s[i];j++) bin[j] = EMPTY;

for(j=0;j<n;j++) {

move A[i]

to the end of bin[A[i]->fi]

}

for(j=0;j<s[i];j++)

concat bin[j] onto the end of A;

}

}

O(si)

O(n)

O(si)

Concatenate si bins into

one list again

Radix Sort - Analysis

• Total

• k iterations, 2si + n for each one

• As long as k is constant

• In general, if the keys are in (0, bk-1)

• Keys are k-digit base-b numbers

si = b for all k

Complexity O(n+kb) = O(n)

S O(si + n) = O(kn + S si)

= O(n + S si)
i=1

i=1 i=1

k

kk

Radix Sort - Analysis

? Any set of keys can be mapped to (0, bk-1)

! So we can always obtain O(n) sorting?

• If k is constant, yes

Radix Sort - Analysis

• But, if k is allowed to increase with n

eg it takes logbn base-b digits to represent n

• so we have

• k = log n, si = 2 (say)



Radix sort is no better than quicksort

S O(2 + n) = O(n log n + S 2)

= O(n log n + 2 log n)

= O(n log n)

i=1 i=1

log n log n

Radix Sort - Analysis

• Radix sort is no better than quicksort

• Another way of looking at this:

• We can keep k constant as n increases

if we allow duplicate keys

• keys are in (0, bk), bk < n

• but if the keys must be unique,

then k must increase with n

• For O(n) performance,

the keys must lie in a restricted range

Radix Sort - Realities

• Radix sort uses a lot of memory

• n si locations for each phase

• In practice, this makes it difficult to achieve O(n)

performance

• Cost of memory management outweighs benefits

Key Points

• Bin Sorts

• If a function exists which can convert the key to an

address (ie a small integer)

and the number of addresses (= number of bins) is not

too large

then we can obtain O(n) sorting

… but remember it’s actually O(n + m)

• Number of bins, m, must be constant and small

