Data Structures and Algorithms

Sorting Bin Sorts

Key Points

Quicksort

- Use for good overall performance where time is not a constraint
- Heap Sort
 - Slower than quick sort, but guaranteed $O(n \log n)$
 - Use for real-time systems where time is critical
- Functions as data types
 - Argument of a function can be a function
 - Enables flexible general purpose classes
 - Enables table driven code

Sorting

- We now know several sorting algorithms
 - **Insertion** $O(n^2)$
 - Bubble $O(n^2)$
 - Heap $O(n \log n)$ Guaranteed
 - Quick $O(n \log n)$ Most of the time!
- Can we do any better?

Sorting - Better than O(n log n) ?

- If all we know about the keys is an ordering rule
 - No!
- However,
 - If we can compute an address from the key (in constant time) then bin sort algorithms can provide better performance

Sorting - Bin Sort

- Assume
 - All the keys lie in a small, fixed range
 - *eg*
 - integers 0-99
 - characters 'A'-'z', '0'-'9'
 - There is at most one item with each value of the key
- Bin sort
 - ***** Allocate a bin for each value of the key
 - Usually an entry in an array
 - ***** For each item,
 - Extract the key
 - Compute it's bin number
 - Place it in the bin
 - Finished!

Sorting - Bin Sort: Analysis

- All the keys lie in a small, fixed range
 - There are *m* possible key values
- There is at most one item with each value of the key
- Bin sort
 - ***** Allocate a bin for each value of the key O(m)
 - Usually an entry in an array
 - * For each item, *n times* Extract the key O(1) Key

 $O(1) \times n \leftarrow O(n)$

- Compute it's bin number O(1)
- Place it in the bin

***** Finished! O(n) + O(m) = O(n+m) = O(n) if n >> m

condition

Sorting - Bin Sort: Caveat

- Key Range
 - All the keys lie in a small, fixed range
 - There are *m* possible key values
 - If this condition is not met, eg m >> n, then bin sort is O(m)
- Example
 - Key is a 32-bit integer, $m = 2^{32}$
 - Clearly, this isn't a good way to sort a few thousand integers
 - Also, we may not have enough space for bins!
- Bin sort trades space for speed!
 - There's no free lunch!

Sorting - Bin Sort with duplicates

• There is at most one item with each value of the key

Relax?

O(m)

- Bin sort
 - ***** Allocate a bin for each value of the key O(m)
 - Usually an entry in an array
 - Array of list heads
 - ***** For each item, *n times*
 - Extract the key O(1)
 - Compute it's bin number O(1)
 - Add it to a list $O(1) \times n \leftarrow O(n)$
 - Join the lists
 - Finished! O(n) + O(m) = O(n+m) = O(n) if n >> m

- Radix sort
 - Bin sort in phases
 - Example 36 9 0 25 1 49 64 16 81 4
 - Phase 1 Sort by least significant digit

0	1	2	3	4	5	6	7	8	9
0	1			64	25	36			9
	81			4		16			49

- Radix sort Bin sort in phases
 - Phase 1 Sort by least significant digit

0	1	2	3	4	5	6	7	8	9
0									

- Radix sort Bin sort in phases
 - Phase 1 Sort by least significant digit

0	1	2	3	4	5	6	7	8	9
0									
1									

Be careful to add after anything in the bin already!

- Radix sort Bin sort in phases
 - Phase 1 Sort by least significant digit

0	1	2	3	4	5	6	7	8	9
0								81	
1									

- Radix sort Bin sort in phases
 - Phase 1 Sort by least significant digit

0	1	2	3	4	5	6	7	8	9
0						64		81	
1									

- Radix sort Bin sort in phases
 - Phase 1 Sort by least significant digit

- Radix sort Bin sort in phases
 - Phase 1 Sort by least significant digit

Phase 2 - Sort by most significant digit

0	1	2	3	4	5	6	7	8	9
0	16	25	36	49		64		81	
1									
4									
9									

Note that the 0 bin had to be quite large!

- Radix sort Bin sort in phases
 - Phase 1 Sort by least significant digit

Phase 2 - Sort by most significant digit

How much space is needed in each phase? *n* items *m* bins

0	1	2	3	4	5	6	7	8	9
0	16	25	36	49		64		81	
1									
4									
9									

- Radix sort Analysis
 - Phase 1 Sort by least significant digit
 - Create m bins O(m)
 - Allocate n items O(n)
 - Phase 2
 - Create m bins O(m)
 - Allocate n items O(n)
 - Final
 - Link m bins O(m)
 - All steps in sequence, so add
 - Total $O(3m+2n) \rightarrow O(m+n) \rightarrow O(n)$ for m << n

Sorting - Radix Sort - Analysis

- Radix sort General
 - Base (or radix) in each phase can be anything suitable
 - Integers
 - Base 10, 16, 100, ...
 - Bases don't have to be the same

```
struct date {
    int day; /* 1 .. 31 */
    int month; /* 1 .. 12 */
    int year; /* 0 .. 99 */
    }
    Phase 1 - s<sub>1</sub>=31 bins
    Phase 2 - s<sub>2</sub>=12 bins
    Phase 3 - s<sub>3</sub>=100 bins
}
```

• Still O(n) if $n >> s_i$ for all i

ra	dixsort(A, n) {	
	<pre>for(i=0;i<k;i++) bin[j]="EMPTY;</pre" each="" for="" for(j="0;j<s[i];j++)" k="" of="" radices=""></k;i++)></pre>	O (s _i)
	<pre>for(j=0;j<n;j++) a[i]="" bin[a[i]-="" end="" move="" of="" the="" to="" {="">fi] }</n;j++)></pre>	O (n)
	<pre>for(j=0;j<s[i];j++) a;="" bin[j]="" concat="" end="" of="" onto="" pre="" the="" }<=""></s[i];j++)></pre>	O (s _i)

- Total
 - k iterations, $2s_i + n$ for each one

$$\sum_{i=1}^{k} O(s_i + n) = O(kn + \sum_{i=1}^{k} s_i)$$
$$= O(n + \sum_{i=1}^{k} s_i)$$

- As long as k is constant
- In general, if the keys are in $(0, b^k-1)$
 - Keys are *k*-digit base-*b* numbers

 $\bigstar s_i = b$ for all k

Complexity O(n+kb) = O(n)

- ? Any set of keys can be mapped to $(0, b^k-1)$
 - **!** So we can always obtain *O*(*n*) sorting?
 - If k is constant, yes

- But, if k is allowed to increase with n
 eg it takes log_bn base-b digits to represent n
- so we have

•
$$k = \log n, \quad s_i = 2 \text{ (say)}$$
•
$$\sum_{i=1}^{\log n} O(2+n) = O(n \log n + \sum_{i=1}^{\log n} 1)$$

$$= O(n \log n + 2 \log n)$$

$$= O(n \log n)$$

→ Radix sort is no better than quicksort

- Radix sort is no better than quicksort
 - Another way of looking at this:
 - We can keep k constant as n increases if we allow duplicate keys

• keys are in $(0, b^k)$, $b^k < n$

- *but* if the keys must be unique, then *k* must increase with *n*
- For O(n) performance, the keys must lie in a restricted range

Radix Sort - Realities

- Radix sort uses a lot of memory
 - $n s_i$ locations for each phase
 - In practice, this makes it difficult to achieve *O*(*n*) performance
 - Cost of memory management outweighs benefits

Key Points

- Bin Sorts
 - If a function exists which can convert the key to an address (*ie* a small integer)
 and the number of addresses (= number of bins) is not too large
 - then we can obtain O(n) sorting
 - ... but remember it's actually O(n + m)
 - Number of bins, *m*, must be constant and small