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b Node ~ city or computer

Edge ~ road or data cable

C
Undirected or Directed

A surprisingly large number of computational
problems can be expressed as graph problems.



Directed and Undirected Graphs

@ ' @ @—»(5)

“ ® @ ® G

(a) (b) (c)

(a) A directed graph 6 = (V, E), where V={1,2,3,4,5,6} and
E={(1,2),(2,2),(2,4),(25),(4,1),(45),(5,4),(6,3)
The edge (2,2) is a self-loop.

(b) An undirected graph 6 = (V,E), where V={1,2,3,4,5,6} and
E={(12),(1D5),(25), (3,6)}. The vertex 4 is isolated.

(c) The subgraph of the graph in part (a) induced by the vertex
set {1,2,3,6}.



Trees

AR ERVESV S

Tree Forest Graph with Cycle

A tree Is a connected, acyclic, undirected graph.

A forest Is a set of trees (not necessarily connected)



Running Time of Graph Algorithms

* Running time often a function of both |V| and |E|.

* For convenience, drop the | . | in asymptotic notation,
e.g. O(V+E).



Representations: Undirected Graphs
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Representations: Directed Graphs
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Breadth-First Search

« Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.

— The length of each path and the paths themselves are returned.

* Notes:
— There are an exponential number of possible paths

— This problem is harder for general graphs than trees because of
cycles!




Breadth-First Search

Input: Graph & =(V ,E) (directed or undirected) and source vertex s V.

Output:
d[v]= shortest path distance 6(s,v) from s to v, Vv €V.
zlv]=u such that (u,v) is last edge on a shortest path from s to v.

 J|dea: send out search ‘wave’ from s.

« Keep track of progress by colouring vertices:
— Undiscovered vertices are coloured black
— Just discovered vertices (on the wavefront) are coloured red.

— Previously discovered vertices (behind wavefront) are coloured grey.
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Breadth-First Search Algorithm

BFS(G, s)

]

for each vertex u € V[G] — {s}
do color[u] < BLACK
dlu] < oo
mlu] < NIL
color[s] <= RED
dls] < 0
[s] < NIL
Q «
ENQUEUE(Q, s)
while Q # ¢
do u < DEQUEUE(Q)
for each v € Adj[u]
do if color[v] = BLACK
then color[v] < RED
dlv] < d[u] + 1
nwlv] < u
ENQUEUE(Q, v)
color[u] < GRAY

Q is a FIFO gueue.

Each vertex assigned finite d
value at most once.

Q contains vertices with d
values i, ..., I, 1+1, ..., i+1}

d values assigned are
monotonically increasing over
time.



Breadth-First-Search is Greedy

« Vertices are handled:
— in order of their discovery (FIFO queue)

— Smallest d values first



Running Time

Each vertex is enqueued at most once > O (V)

Each entry in the adjacency lists is scanned at most once — O(E)

o BFS(G, s)
Thus run time I1s O(V + E) 1 for each vertex u € V[G] — {s)
2 do color[u] < BLACK
3 d[u] <« oo
4 mlu] < NIL
5 color[s] <~ RED

6 d[s] <0
7 m[s] <« NIL

8 O« 0

9 ENQUEUE(Q, s)

10 while Q # ¢
11 do u < DEQUEUE(Q)

12 for each v € Adj[u]

13 do if color[v] = BLACK
14 then color|v] <~ RED
15 dlv] < d[uj+ 1
16 wlv] <« u
17 ENQUEUE(Q, v)

18 color[u] < GRAY



Depth First Search (DFS)

e |dea:

— Continue searching “deeper” into the graph, until we get
stuck.

— If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

« Does not recover shortest paths, but can be useful
for extracting other properties of graph, e.g.,

— Topological sorts
— Detection of cycles
— Extraction of strongly connected components



Depth-First Search

Input: Graph 6 = (V ,E) (directed or undirected)

Output: 2 timestamps on each vertex:
1<d[v]<flv]l<2|V ]

d[v] =discovery time.
f [v] = finishing time.

« EXxplore every edge, starting from different vertices if necessary.
« As soon as vertex discovered, explore from it.

« Keep track of progress by colouring vertices:
— Black: undiscovered vertices
— Red: discovered, but not finished (still exploring from it)

— Gray: finished (found everything reachable from it).
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Classification of Edges in DFS

Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

Back edges are those edges (u, v) connecting a vertex u to an ancestor v in
a depth-first tree.

Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.
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Classification of Edges in DFS

1. Tree edges: Edge (u, v) isatree edge if vwas black when (u, v) traversed.
2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if vwas gray when (u, v) traversed and

d[v] < d[u].
Classifying edges can help to identify
properties of the graph, e.g., agraph is ;
acyclic iff DFS yields no back edges. £ /‘\
® [22/23

Co\'

= | |
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DFS(G) Depth-First Search Algorithm
1 for each vertex u € V[G]
do color|u] < BLACK
mwlu] < NIL

time < QO

for each vertex u € V[G]

do if color[u] = BLACK
then DFS-VISIT(u)

~N O\ B W

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

color[u] < RED >BLACK vertex u has just been discovered.
time < time +1
dlu] « time
for each v € Adjlu] > Explore edge (u, v).
do if color|v] = BLACK
then 7[v] <« u
DFS-VisiT(v)

color[u] < GRAY >  GRAY u; it is finished.
flu] < time < time 41

B R R I N B S



DFS(G) Depth-First Search Algorithm
1 for each vertex u € V[G] A
do color|u] < BLACK
mwlu] < NIL
time < 0 > total work = 6(V)
for each vertex u € V[G]
do if color[u] = BLACK

S
IO IBIRD ARG Thus running time = OV +E)

~N O\ B W

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

color[u] < RED >BLACK vertex u has just been discovered.
time < time +1
dlu] « time
for each v € Adjlu] > Explore edge (i) v).
do if color[v] = BLACK
then L[]v} - >total work = Y | Adj[v]|=6(E)
DFES-VISIT(v) Ve
color[u] < GRAY > GRAY u; it isT’inished.
flu] < time < time 41

B R R I N B S



Back to Shortest Path

BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Here, the length of a path is simply the number of edges
on the path.

But what if edges have different ‘costs’?
o(s,v)=3 o(s,v)=12

7
1
S S2

3



Single-Source (Weighted) Shortest Paths



The Problem

 What is the shortest driving route from Toronto to Ottawa?

* Input:

Directed Graph G =(V,E)
Edge weightsw:E > R

k
Weight of path p =<vy,v,,...v, > =D w(v,,.v;)
i=1
Shortest-path weight from u to v :

S(u,v) = min{w(p): u — - —>v} ifJapathu > .- —>v,
0 otherwise.

Shortest path from u to v is any path p such that w(p) = 6(u,v).



Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.



Shortest path variants

Single-source shortest-paths problem: — the
shortest path from s to each vertex v. (e.g. BFS)

Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.



Negative-weight edges

* OK, as long as no negative-weight cycles are reachable
from the source.

— If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = — for all v on the cycle.

— But OK if the negative-weight cycle is not reachable from the
source.

— Some algorithms work only if there are no negative-weight edges
in the graph.




Cycles

« Shortest paths can’t contain cycles:
— Already ruled out negative-weight cycles.
— Positive-weight: we can get a shorter path by omitting the cycle.

— Zero-weight: no reason to use them - assume that our solutions
won't use them.



Output of a single-source shortest-path algorithm

* For each vertex vin V:

— d[v] = &(s, V).
.+ Initially, d[v]=w.

* Reduce as algorithm progresses.
But always maintain d[v] = &(s, v).

 Call d[v] a shortest-path estimate.
— T1[v] = predecessor of v on a shortest path from s.

* If no predecessor, 1T[v] = NIL.

11 induces a tree — shortest-path tree.



Initialization

 All shortest-paths algorithms start with the
same Initialization:

INIT-SINGLE-SOURCE(V, s)

foreachvinV
do d[v]«—<°
m[v] < NIL

d[s] — O



Relaxing an edge

and taking (u,v)?

RELAX(u, v,w)
If d[v] > d[u] + w(u, V) then
d[v] < d[u] + w(u, V)

m[v]<— u

i V
(5 E f@

: RELAX(1e,v,w)

1_
~@

i '

@_-

I i

Can we improve shortest-path estimate for v by going through u

TJ 1 [
P = 2 ()

RELAX(1e,v.w)

T
| Lhy
/

I



General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are taken
and

how many times each edge is relaxed.



Example: Dijkstra’s algorithm

Applies to general weighted directed graph (may contain
cycles).

But weights must be non-negative.

Essentially a weighted version of BFS.

— Instead of a FIFO gueue, uses a priority queue.
— Keys are shortest-path weights (d[v]).
Maintain 2 sets of vertices:

— S = vertices whose final shortest-path weights are determined.

— Q = priority queue = V-S.



Dijkstra's algorithm

DIIKSTRA(G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s5)
2 S <«

3 0 <« V[G]

4 while Q #£ 0

5 do u < EXTRACT-MIN(Q)

6 S «— S U {u)

7 for each vertex v € Adj[u]

3 do RELAX(u, v, w)

Dijkstra's algorithm can be viewed as greedy, since it always
chooses the "lightest"” vertex in V- S to add to S.



Dijkstra's algorithm: Analysis
Analysis:

Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)

S «— S U {u)
for each vertex v € Adj[u]
do RELAX (i, v, w) O(logV) xO(E) iterations

1 INITIALIZE-SINGLE-SOURCE(G, s)O(V)

2 S <~

3 0 <« VI[G]

4 while Q # 0/

5 do u < EXTRACT-MIN(Q) O(logV)xO(V) iterations
6

7

8

— Running Time is O(E logV)
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