

A surprisingly large number of computational problems can be expressed as graph problems.

Directed and Undirected Graphs

- (a) A directed graph G = (V, E), where V = {1,2,3,4,5,6} and E = {(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)}. The edge (2,2) is a self-loop.
- (b) An undirected graph G = (V,E), where $V = \{1,2,3,4,5,6\}$ and $E = \{(1,2), (1,5), (2,5), (3,6)\}$. The vertex 4 is isolated.
- (c) The subgraph of the graph in part (a) induced by the vertex set {1,2,3,6}.

Trees

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Running Time of Graph Algorithms

Running time often a function of both |V| and |E|.

 For convenience, drop the | . | in asymptotic notation, e.g. O(V+E).

Representations: Undirected Graphs

1 0 1 0 0 1 2 1 0 1 1 1 3 0 1 0 1 0 4 0 1 1 0 1		1	2	3	4	5
3 0 1 0 1 0 4 0 1 1 0 1	1	0	1	0	0	1
4 0 1 1 0 1	2	1	0	1	1	1
4 0 1 1 0 1	3	0	1	0	1	0
	4	0	1	1	0	1
5 1 1 0 1 0	5	1	1	0	1	0

Adjacency List

Adjacency Matrix

Space complexity:

$$\theta(V+E)$$

$$\theta(V^2)$$

Time to find all neighbours of vertex u: $\theta(\text{degree}(u))$

$$\theta(V)$$

Time to determine if $(u, v) \in E$:

$$\theta(\text{degree}(u))$$

$$\theta(1)$$

Representations: Directed Graphs

1	2	3	4	5	6
0	1	0	1	0	0
0	0	0	0	1	0
0	0	0	0	1	1
0	1	0	0	0	0
0	0	0	1	0	0
0	0	0	0	0	1
	0 0 0 0	0 1 0 0 0 0 0 1 0 0	0 1 0 0 0 0 0 0 0 0 1 0 0 0 0	0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1	1 2 3 4 5 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Adjacency List

Adjacency Matrix

Space complexity:

$$\theta(V+E)$$

$$\theta(V^2)$$

Time to find all neighbours of vertex u: $\theta(\text{degree}(u))$

$$\theta(V)$$

Time to determine if $(u, v) \in E$:

$$\theta(\text{degree}(u))$$

$$\theta(1)$$

Breadth-First Search

- Goal: To recover the shortest paths from a source node s to all other reachable nodes v in a graph.
 - The length of each path and the paths themselves are returned.

Notes:

- There are an exponential number of possible paths
- This problem is harder for general graphs than trees because of cycles!

Breadth-First Search

Input: Graph G = (V, E) (directed or undirected) and source vertex $s \in V$.

Output:

```
d[v] = shortest path distance \delta(s,v) from s to v, \forall v \in V.

\pi[v] = u such that (u,v) is last edge on a shortest path from s to v.
```

- Idea: send out search 'wave' from s.
- Keep track of progress by colouring vertices:
 - Undiscovered vertices are coloured black
 - Just discovered vertices (on the wavefront) are coloured red.
 - Previously discovered vertices (behind wavefront) are coloured grey.

BFS Found Not Handled d=0Queue a g

BFS Found Not Handled d=0Queue a g

Breadth-First Search Algorithm

```
BFS(G, s)
       for each vertex u \in V[G] - \{s\}
  2
             do\ color[u] \leftarrow BLACK
  3
                 d[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{NIL}
  5 \quad color[s] \leftarrow \textbf{RED}
  6 d[s] \leftarrow 0
      \pi[s] \leftarrow \text{NIL}
 8 Q \leftarrow \emptyset
      ENQUEUE(Q, s)
10
      while Q \neq \emptyset
11
             \mathbf{do} \ u \leftarrow \mathsf{DEQUEUE}(Q)
12
                  for each v \in Adj[u]
13
                       do if color[v] = BLACK
14
                               then color[v] \leftarrow RED
15
                                      d[v] \leftarrow d[u] + 1
16
                                      \pi[v] \leftarrow u
17
                                      ENQUEUE(Q, v)
18
                 color[u] \leftarrow GRAY
```

- Q is a FIFO queue.
- Each vertex assigned finite d value at most once.
- Q contains vertices with d values {i, ..., i, i+1, ..., i+1}
- d values assigned are monotonically increasing over time.

Breadth-First-Search is Greedy

- Vertices are handled:
 - in order of their discovery (FIFO queue)
 - Smallest d values first

Running Time

Each vertex is enqueued at most once $\rightarrow O(V)$

Each entry in the adjacency lists is scanned at most once $\rightarrow O(E)$

Thus run time is O(V + E).

```
BFS(G, s)
  1 for each vertex u \in V[G] - \{s\}
            do \ color[u] \leftarrow BLACK
                 d[u] \leftarrow \infty
                \pi[u] \leftarrow \text{NIL}
 5 \quad color[s] \leftarrow \mathbf{RED}
 6 d[s] \leftarrow 0
 7 \pi[s] \leftarrow \text{NIL}
 8 \quad Q \leftarrow \emptyset
 9 ENQUEUE(Q, s)
10 while Q \neq \emptyset
11
            do u \leftarrow \text{DEQUEUE}(Q)
12
                 for each v \in Adi[u]
13
                      do if color[v] = BLACK
14
                             then color[v] \leftarrow \mathbf{RED}
15
                                    d[v] \leftarrow d[u] + 1
16
                                    \pi[v] \leftarrow u
17
                                    ENQUEUE(Q, v)
                color[u] \leftarrow \mathbf{GRAY}
18
```

Depth First Search (DFS)

Idea:

- Continue searching "deeper" into the graph, until we get stuck.
- If all the edges leaving v have been explored we "backtrack" to the vertex from which v was discovered.
- Does not recover shortest paths, but can be useful for extracting other properties of graph, e.g.,
 - Topological sorts
 - Detection of cycles
 - Extraction of strongly connected components

Depth-First Search

Input: Graph G = (V, E) (directed or undirected)

Output: 2 timestamps on each vertex:

```
d[v] = discovery time.
f[v] = finishing time.
1 \le d[v] < f[v] \le 2|V|
```

- Explore every edge, starting from different vertices if necessary.
- As soon as vertex discovered, explore from it.
- Keep track of progress by colouring vertices:
 - Black: undiscovered vertices
 - Red: discovered, but not finished (still exploring from it)
 - Gray: finished (found everything reachable from it).

DFS Note: Stack is Last-In First-Out (LIFO) Found d Not Handled Stack <node,# edges>

Classification of Edges in DFS

- 1. Tree edges are edges in the depth-first forest G_{π} . Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v).
- **2. Back edges** are those edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree.
- 3. Forward edges are non-tree edges (u, v) connecting a vertex u to a descendant v in a depth-first tree.
- 4. Cross edges are all other edges. They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other.

Classification of Edges in DFS

- 1. Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.
- 2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.
- 3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed and d[v] > d[u].
- **4.** Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and d[v] < d[u].

Depth-First Search Algorithm

DFS(G)

```
1 for each vertex u \in V[G]

2 do color[u] \leftarrow BLACK

3 \pi[u] \leftarrow NIL

4 time \leftarrow 0

5 for each vertex u \in V[G]

6 do if color[u] = BLACK

7 then DFS-VISIT(u)
```

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

```
1 color[u] \leftarrow RED \triangleright BLACK vertex u has just been discovered.

2 time \leftarrow time + 1

3 d[u] \leftarrow time

4 for each \ v \in Adj[u] \triangleright Explore edge \ (u, v).

5 do \ if \ color[v] = BLACK

6 then \ \pi[v] \leftarrow u

7 DFS-VISIT(v)

8 color[u] \leftarrow GRAY \triangleright GRAY \ u; it is finished.

9 f[u] \leftarrow time \leftarrow time + 1
```

Depth-First Search Algorithm

DFS(G)

```
1 for each vertex u \in V[G]

2 do color[u] \leftarrow BLACK

3 \pi[u] \leftarrow NIL

4 time \leftarrow 0

5 for each vertex u \in V[G]

6 do if color[u] = BLACK

7 then DFS-VISIT(u)

Thus running time = \theta(V + E)
```

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

```
1 color[u] \leftarrow \text{RED} \triangleright \text{BLACK vertex } u \text{ has just been discovered.}
2 time \leftarrow time + 1
3 d[u] \leftarrow time
4 for each \ v \in Adj[u] \triangleright \text{Explore edge } (u) \ v).
5 do \text{ if } color[v] = \text{BLACK}
6 then \ \pi[v] \leftarrow u
7 DFS\text{-VISIT}(v)
8 color[u] \leftarrow \text{GRAY} \triangleright \text{GRAY } u; \text{ it is finished.}
9 f[u] \leftarrow time \leftarrow time + 1
```

Back to Shortest Path

- BFS finds the shortest paths from a source node s to every vertex v in the graph.
- Here, the length of a path is simply the number of edges on the path.
- But what if edges have different 'costs'?

Single-Source (Weighted) Shortest Paths

The Problem

- What is the shortest driving route from Toronto to Ottawa?
- Input:

Directed Graph G = (V, E)

Edge weights $w: E \to \mathbb{R}$

Weight of path
$$p = \langle v_0, v_1, ..., v_k \rangle = \sum_{i=1}^k w(v_{i-1}, v_i)$$

Shortest-path weight from u to v:

$$\delta(u,v) = \begin{cases} \min\{w(p): u \to \cdots \to v\} & \text{if } \exists \text{ a path } u \to \cdots \to v, \\ \infty & \text{otherwise.} \end{cases}$$

Shortest path from u to v is any path p such that $w(p) = \delta(u,v)$.

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

Shortest path variants

- Single-source shortest-paths problem: the shortest path from s to each vertex v. (e.g. BFS)
- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex t from each vertex v.
- Single-pair shortest-path problem: Find a shortest path from *u* to *v* for given vertices *u* and *v*.
- All-pairs shortest-paths problem: Find a shortest path from *u* to *v* for every pair of vertices *u* and *v*.

Negative-weight edges

- OK, as long as no negative-weight cycles are reachable from the source.
 - If we have a negative-weight cycle, we can just keep going around it, and get w(s, v) = -∞ for all v on the cycle.
 - But OK if the negative-weight cycle is not reachable from the source.
 - Some algorithms work only if there are no negative-weight edges in the graph.

Cycles

- Shortest paths can't contain cycles:
 - Already ruled out negative-weight cycles.
 - Positive-weight: we can get a shorter path by omitting the cycle.
 - Zero-weight: no reason to use them → assume that our solutions won't use them.

Output of a single-source shortest-path algorithm

For each vertex v in V:

$$- d[v] = \delta(s, v).$$

- Initially, d[v]=∞.
- Reduce as algorithm progresses.
 But always maintain d[v] ≥ δ(s, v).
- Call d[v] a shortest-path estimate.
- $-\pi[v]$ = predecessor of v on a shortest path from s.
 - If no predecessor, $\pi[v] = NIL$.
 - π induces a tree shortest-path tree.

Initialization

 All shortest-paths algorithms start with the same initialization:

```
INIT-SINGLE-SOURCE(V, s) for each v in V do \ d[v] \leftarrow \infty \pi[v] \leftarrow NIL d[s] \leftarrow 0
```

Relaxing an edge

 Can we improve shortest-path estimate for v by going through u and taking (u,v)?

RELAX(u, v,w)

if
$$d[v] > d[u] + w(u, v)$$
 then
$$d[v] \leftarrow d[u] + w(u, v)$$

$$\pi[v] \leftarrow u$$

General single-source shortest-path strategy

- 1. Start by calling INIT-SINGLE-SOURCE
- 2. Relax Edges

Algorithms differ in the order in which edges are taken and

how many times each edge is relaxed.

Example: Dijkstra's algorithm

- Applies to general weighted directed graph (may contain cycles).
- But weights must be non-negative.
- Essentially a weighted version of BFS.
 - Instead of a FIFO queue, uses a priority queue.
 - Keys are shortest-path weights (d[v]).
- Maintain 2 sets of vertices:
 - S = vertices whose final shortest-path weights are determined.
 - Q = priority queue = V-S.

Dijkstra's algorithm

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S \leftarrow \emptyset

3 Q \leftarrow V[G]

4 while Q \neq \emptyset

5 do u \leftarrow \text{Extract-Min}(Q)

6 S \leftarrow S \cup \{u\}

7 for each vertex v \in Adj[u]

8 do Relax(u, v, w)
```

 Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" vertex in V - S to add to S.

Dijkstra's algorithm: Analysis

- Analysis:
 - Using minheap, queue operations takes O(logV) time

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s) O(V)
2 S \leftarrow \emptyset
3 \quad Q \leftarrow V[G]
4
    while Q \neq \emptyset
5
           \mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)
                                                    O(\log V) \times O(V) iterations
6
               S \leftarrow S \cup \{u\}
7
               for each vertex v \in Adj[u]
                    do RELAX(u, v, w)
                                                    O(\log V) \times O(E) iterations
    \rightarrow Running Time is O(E \log V)
```

Key:

White ⇔ Not Found

Grey ⇔ Handling

Black \Leftrightarrow Handled

