Graph [ S }

‘;ﬂ.a.“ Jﬁ.ﬁ\

b Node ~ city or computer

Edge ~ road or data cable

C
Undirected or Directed

A surprisingly large number of computational
problems can be expressed as graph problems.



Directed and Undirected Graphs

@ ' @ @—»(5)

“ ® @ ® G

(a) (b) (c)

(a) A directed graph 6 = (V, E), where V={1,2,3,4,5,6} and
E={(1,2),(2,2),(2,4),(25),(4,1),(45),(5,4),(6,3)
The edge (2,2) is a self-loop.

(b) An undirected graph 6 = (V,E), where V={1,2,3,4,5,6} and
E={(12),(1D5),(25), (3,6)}. The vertex 4 is isolated.

(c) The subgraph of the graph in part (a) induced by the vertex
set {1,2,3,6}.



Trees

AR ERVESV S

Tree Forest Graph with Cycle

A tree Is a connected, acyclic, undirected graph.

A forest Is a set of trees (not necessarily connected)



Running Time of Graph Algorithms

* Running time often a function of both |V| and |E|.

* For convenience, drop the | . | in asymptotic notation,
e.g. O(V+E).



Representations: Undirected Graphs

V[ P2 5]
(1) (2) 2| 1] s3] G4 ]/]
i 3 g! —4-'_2 ! 4
| ~ s P2l {57 3/
(5 (4) S| —~4) =1 2]/
Adjacency List
Space complexity: 6V +E)

Time to find all neighbours of vertex u: @(degree(u))

Time to determine if (u,v) eE: 6(degree(u))

1 2 3 4 5
1o 1 0 0 1]
201 0 1 1 1]
310 1 0 L O
410 1 1 0 1|
5011 01 0

e m

Adjacency Matrix

oV*)
o)
o(1)



Representations: Directed Graphs

= O
L

Adjacency List

V +E)
Time to find all neighbours of vertex u: @(degree(u))

6(degree(u))

Space complexity:

Time to determine if (u,v) e E:

-

|

2140
11
4 |10
5 ‘ 0

I
(}
U

|
0
0

0
]
0
()
()
i)

(
0
0

{0

()

U
(0
)

—

Adjacency Matrix

oV*)

o)

(1)



Breadth-First Search

« Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.

— The length of each path and the paths themselves are returned.

* Notes:
— There are an exponential number of possible paths

— This problem is harder for general graphs than trees because of
cycles!




Breadth-First Search

Input: Graph & =(V ,E) (directed or undirected) and source vertex s V.

Output:
d[v]= shortest path distance 6(s,v) from s to v, Vv €V.
zlv]=u such that (u,v) is last edge on a shortest path from s to v.

 J|dea: send out search ‘wave’ from s.

« Keep track of progress by colouring vertices:
— Undiscovered vertices are coloured black
— Just discovered vertices (on the wavefront) are coloured red.

— Previously discovered vertices (behind wavefront) are coloured grey.



BFS

Found
Not Handled
Queue



Found
Not Handled
Queue




BFS

Found
Not Handled
Queue

O Qo o



BFS

Found
Not Handled
Queue

O Qo o



BFS

Found
Not Handled
Queue

d
9
b
C
f




BFS

Found
Not Handled
Queue



BFS

Found
Not Handled
Queue



BFS

Found
Not Handled
Queue



BFS

Found
Not Handled
Queue

C
f
m
e
J



BFS

Found
Not Handled
Queue



BFS

Found
Not Handled
Queue



Found
Not Handled
Queue

d=2

| . (D

d=3




Found
Not Handled
Queue

d=2

d=3

[
o
[
N
D ) )




Found
Not Handled
Queue

d=2




Found
Not Handled
Queue

h| d=3
i
I




Found
Not Handled
Queue

d=3

K[ d=4




Found
Not Handled
Queue

d=3

K[ d=4




Found
Not Handled
Queue

d=3

k[ d=4




Found
Not Handled
Queue

k| d=4




Found
Not Handled
Queue

d=4
d=5




Breadth-First Search Algorithm

BFS(G, s)

]

for each vertex u € V[G] — {s}
do color[u] < BLACK
dlu] < oo
mlu] < NIL
color[s] <= RED
dls] < 0
[s] < NIL
Q «
ENQUEUE(Q, s)
while Q # ¢
do u < DEQUEUE(Q)
for each v € Adj[u]
do if color[v] = BLACK
then color[v] < RED
dlv] < d[u] + 1
nwlv] < u
ENQUEUE(Q, v)
color[u] < GRAY

Q is a FIFO gueue.

Each vertex assigned finite d
value at most once.

Q contains vertices with d
values i, ..., I, 1+1, ..., i+1}

d values assigned are
monotonically increasing over
time.



Breadth-First-Search is Greedy

« Vertices are handled:
— in order of their discovery (FIFO queue)

— Smallest d values first



Running Time

Each vertex is enqueued at most once > O (V)

Each entry in the adjacency lists is scanned at most once — O(E)

o BFS(G, s)
Thus run time I1s O(V + E) 1 for each vertex u € V[G] — {s)
2 do color[u] < BLACK
3 d[u] <« oo
4 mlu] < NIL
5 color[s] <~ RED

6 d[s] <0
7 m[s] <« NIL

8 O« 0

9 ENQUEUE(Q, s)

10 while Q # ¢
11 do u < DEQUEUE(Q)

12 for each v € Adj[u]

13 do if color[v] = BLACK
14 then color|v] <~ RED
15 dlv] < d[uj+ 1
16 wlv] <« u
17 ENQUEUE(Q, v)

18 color[u] < GRAY



Depth First Search (DFS)

e |dea:

— Continue searching “deeper” into the graph, until we get
stuck.

— If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

« Does not recover shortest paths, but can be useful
for extracting other properties of graph, e.g.,

— Topological sorts
— Detection of cycles
— Extraction of strongly connected components



Depth-First Search

Input: Graph 6 = (V ,E) (directed or undirected)

Output: 2 timestamps on each vertex:
1<d[v]<flv]l<2|V ]

d[v] =discovery time.
f [v] = finishing time.

« EXxplore every edge, starting from different vertices if necessary.
« As soon as vertex discovered, explore from it.

« Keep track of progress by colouring vertices:
— Black: undiscovered vertices
— Red: discovered, but not finished (still exploring from it)

— Gray: finished (found everything reachable from it).



Found
Not Handled
Stack
<node,# edges>




DFS Found
Not Handled

Stack
<node,# edges>

s,0




DFS

1/

Found
Not Handled

Stack
<node,# edges>




DFS

1/

Found
Not Handled

Stack
<node,# edges>




DFS Found
Not Handled

S [ U Stack
<node,# edges>




DES Found
Not Handled

S [ U Stack
<node,# edges>




DES Found
Not Handled

S [ U Stack
<node,# edges>




DFS

1/

Found
Not Handled

Stack
<node,# edges>




DFS Found
Not Handled

S [ U Stack
<node,# edges>

o




DFS Found

Cross Edge to handled node: d[h]«d[i] Not Handled
’ S [ Stack

<node,# edges>

=




DFS Found
Not Handled

S [ U Stack
<node,# edges>

N




A]7

DFS

1/

Found
Not Handled
Stack
<node,# edges>

w o

9/




DES Found
Not Handled

S [ U Stack
<node,# edges>

‘,
w

w HDH O
N

417 |h®

9/




DFS Found

Not Handled
S | U Stack

~—— <node,# edges>

| Lor10




DFS

1/

11/

Found
Not Handled
Stack

<node,# edges>

1,4

a,l
S,1

9/10




DFS Found
Not Handled

S [ Stack
<node,# edges>

b
o

1 &g

= —

»w o O—Q

=N

| 9/10




DES Found
----------- . Not Handled

Stack
, <node,# edges>

JIR
e\‘x
11/ g | j’l
0,1
- : 1,4
“ C,2
a,l
S,1

| 9/10




DFS Found
Not Handled

S [ 1 Stack
<node,# edges>

3/

11/ g J12

j 12/ C,2

\
- " a.l
S,1
8)

13/

| 9/10




DFS Found
Not Handled

S [ 1 Stack
<node,# edges>

3/

11/ g J12

j 12/ C,2

\
- " a.l
S,1
8)

13/

| 9/10




DFS Found
Not Handled

S [ Stack
<node,# edges>

11/

/‘ M (13/14
o

| 9/10




DES Found
Not Handled

S [ U Stack
<node,# edges>

11/

g
J1215 C,2

a,l
| S,1

/‘ M |[13/14
o

| 9/10




DFS Found

Not Handled
Stack

<node,# edges>

12/15

13/14

| 9/10




DFS Found

Not Handled
Stack

<node,# edges>

j12/15 C,2

13/14




DFS Found

Not Handled
Stack

<node,# edges>

j12/15 C,2

13/14




DFS Found

Not Handled
Stack
<node,# edges>

12/15

13/14

| Lor10




DFS Found
Not Handled

Stack
<node,# edges>

3/

-12/15 C,2

a7 |h®

® M(13/14
o L5/ /
K™+ .

| 9/10




DES Found
Forward Edge: d[f]>d[c] Not Handled

Stack
<node,# edges>

-12/15 C,3

® M(13/14
", 5/6 /

| 9/10




DFS Found
Not Handled

Stack
<node,# edges>

12/15

® Mi13/14
k — o

| 9/10




DFS Found
Not Handled

Stack
<node,# edges>

12/15

® Mi13/14
k — o

| 9/10




DFS Found
Not Handled

Stack
<node,# edges>

12/15

S,1

® Mi13/14
® 5/6 /

| 9/10




DFES Found
Not Handled

Stack
<node,# edges>

3/19

j 12/15

417 h i 81 2
M |13/14
5/6

| 9/10




DFES Found
Not Handled

Stack
<node,# edges>

3/19

j 12/15

417 h i 81 2
M |13/14
5/6

| 9/10




DFES Found
Not Handled

Stack
<node,# edges>

2/20

3/19

12/15

13/14




DFES Found
Not Handled

Stack
<node,# edges>

2/20

22/

3/19

Jiz1s e,0

13/14




DFES Found
Not Handled

Stack
<node,# edges>

2/20

22/

3/19

izt el

d,3
S,2

13/14




DFES Found
Not Handled

Stack
<node,# edges>

22/23

j 12/15

13/14




DFES Found
Not Handled

Stack
<node,# edges>
2120

/ A
dl21/24 El22/23

3/19 1116/ 0

J1215

S,2

M |[13/14

| 9/10




DFES Found
Not Handled

Stack
<node,# edges>
2120

/ A
dl21/24 El22/23

3/19 11161 0

J1215

S,3

M |[13/14

| 9/10




DFS Found

Not Handled
S | 1/ Stack
2120 ‘ﬂs o <node,# edges>
ad »
di21/24 A e[22/23
S/ 11/16)%¢ 9
).
J12i15
b,0
S,4
IM|[13/14

| L9/10




DFS Found

Not Handled
S | 1/ Stack
2120 ‘ﬂs o <node,# edges>
ad »
di21/24 A e[22/23
S/ 11/16)%¢ 9
).
J12i15
b,1
S,4
IM|[13/14

| L9/10




DFS Found

Not Handled
S | 1 Stack
2120 ‘ﬂs o <node,# edges>
ad i
di21/24 e[22/23
S/ 11/16)%¢ 9
\.
J12i15
b,2
S,4
M |[13/14

| L9/10




DFS Found

Not Handled
S | 1 Stack
2120 ‘ﬂs o <node,# edges>
ad i
di21/24 e[22/23
S/ 11/16)%¢ 9
\.
J12i15
b,3
S,4
M |[13/14

| L9/10




DFES Found

Not Handled
Stack

<node,# edges>
2/20 [)|25/26
a

d21/24 €l22/23
3/19 11716/%¢ 9
).
J1215
S, 4
M |[13/14

| 9/10




3/19

Tree Edges
Back Edges
Forward Edges

Cross Edges
2/20

DFS
1/27 | Finished!
0
21/24
1116)%¢ 9

JLo/10

25/26

e[22/23

Found
Not Handled

Stack
<node,# edges>

J1215

13/14




Classification of Edges in DFS

Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

Back edges are those edges (u, v) connecting a vertex u to an ancestor v in
a depth-first tree.

Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

1/27

[2/20] Q/zf)
{ e
[3/19]
- [17/18]
' o
[}

w2

C

8/19

4/7

e 13/14
. 56 / m
()



Classification of Edges in DFS

1. Tree edges: Edge (u, v) isatree edge if vwas black when (u, v) traversed.
2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if vwas gray when (u, v) traversed and

d[v] < d[u].
Classifying edges can help to identify
properties of the graph, e.g., agraph is ;
acyclic iff DFS yields no back edges. £ /‘\
® [22/23

Co\'

= | |

((05]




DFS(G) Depth-First Search Algorithm
1 for each vertex u € V[G]
do color|u] < BLACK
mwlu] < NIL

time < QO

for each vertex u € V[G]

do if color[u] = BLACK
then DFS-VISIT(u)

~N O\ B W

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

color[u] < RED >BLACK vertex u has just been discovered.
time < time +1
dlu] « time
for each v € Adjlu] > Explore edge (u, v).
do if color|v] = BLACK
then 7[v] <« u
DFS-VisiT(v)

color[u] < GRAY >  GRAY u; it is finished.
flu] < time < time 41

B R R I N B S



DFS(G) Depth-First Search Algorithm
1 for each vertex u € V[G] A
do color|u] < BLACK
mwlu] < NIL
time < 0 > total work = 6(V)
for each vertex u € V[G]
do if color[u] = BLACK

S
IO IBIRD ARG Thus running time = OV +E)

~N O\ B W

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

color[u] < RED >BLACK vertex u has just been discovered.
time < time +1
dlu] « time
for each v € Adjlu] > Explore edge (i) v).
do if color[v] = BLACK
then L[]v} - >total work = Y | Adj[v]|=6(E)
DFES-VISIT(v) Ve
color[u] < GRAY > GRAY u; it isT’inished.
flu] < time < time 41

B R R I N B S



Back to Shortest Path

BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Here, the length of a path is simply the number of edges
on the path.

But what if edges have different ‘costs’?
o(s,v)=3 o(s,v)=12

7
1
S S2

3



Single-Source (Weighted) Shortest Paths



The Problem

 What is the shortest driving route from Toronto to Ottawa?

* Input:

Directed Graph G =(V,E)
Edge weightsw:E > R

k
Weight of path p =<vy,v,,...v, > =D w(v,,.v;)
i=1
Shortest-path weight from u to v :

S(u,v) = min{w(p): u — - —>v} ifJapathu > .- —>v,
0 otherwise.

Shortest path from u to v is any path p such that w(p) = 6(u,v).



Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.



Shortest path variants

Single-source shortest-paths problem: — the
shortest path from s to each vertex v. (e.g. BFS)

Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.



Negative-weight edges

* OK, as long as no negative-weight cycles are reachable
from the source.

— If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = — for all v on the cycle.

— But OK if the negative-weight cycle is not reachable from the
source.

— Some algorithms work only if there are no negative-weight edges
in the graph.




Cycles

« Shortest paths can’t contain cycles:
— Already ruled out negative-weight cycles.
— Positive-weight: we can get a shorter path by omitting the cycle.

— Zero-weight: no reason to use them - assume that our solutions
won't use them.



Output of a single-source shortest-path algorithm

* For each vertex vin V:

— d[v] = &(s, V).
.+ Initially, d[v]=w.

* Reduce as algorithm progresses.
But always maintain d[v] = &(s, v).

 Call d[v] a shortest-path estimate.
— T1[v] = predecessor of v on a shortest path from s.

* If no predecessor, 1T[v] = NIL.

11 induces a tree — shortest-path tree.



Initialization

 All shortest-paths algorithms start with the
same Initialization:

INIT-SINGLE-SOURCE(V, s)

foreachvinV
do d[v]«—<°
m[v] < NIL

d[s] — O



Relaxing an edge

and taking (u,v)?

RELAX(u, v,w)
If d[v] > d[u] + w(u, V) then
d[v] < d[u] + w(u, V)

m[v]<— u

i V
(5 E f@

: RELAX(1e,v,w)

1_
~@

i '

@_-

I i

Can we improve shortest-path estimate for v by going through u

TJ 1 [
P = 2 ()

RELAX(1e,v.w)

T
| Lhy
/

I



General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are taken
and

how many times each edge is relaxed.



Example: Dijkstra’s algorithm

Applies to general weighted directed graph (may contain
cycles).

But weights must be non-negative.

Essentially a weighted version of BFS.

— Instead of a FIFO gueue, uses a priority queue.
— Keys are shortest-path weights (d[v]).
Maintain 2 sets of vertices:

— S = vertices whose final shortest-path weights are determined.

— Q = priority queue = V-S.



Dijkstra's algorithm

DIIKSTRA(G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s5)
2 S <«

3 0 <« V[G]

4 while Q #£ 0

5 do u < EXTRACT-MIN(Q)

6 S «— S U {u)

7 for each vertex v € Adj[u]

3 do RELAX(u, v, w)

Dijkstra's algorithm can be viewed as greedy, since it always
chooses the "lightest"” vertex in V- S to add to S.



Dijkstra's algorithm: Analysis
Analysis:

Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)

S «— S U {u)
for each vertex v € Adj[u]
do RELAX (i, v, w) O(logV) xO(E) iterations

1 INITIALIZE-SINGLE-SOURCE(G, s)O(V)

2 S <~

3 0 <« VI[G]

4 while Q # 0/

5 do u < EXTRACT-MIN(Q) O(logV)xO(V) iterations
6

7

8

— Running Time is O(E logV)



White < Not Found










Example










