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GREEDY TECHNIQUES
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Greedy Technique

Constructs a solution to an optimization problem piece by 

piece through a sequence of choices that are:

 feasible, i.e. satisfying the constraints

 locally optimal (with respect to some neighborhood definition)

 greedy (in terms of some measure), and irrevocable

For some problems, it yields a globally optimal solution for every 
instance. For most, does not but can be useful for fast 
approximations. We are mostly interested in the former case 
in this class.

Defined by an 
objective function and 
a set of constraints
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Applications of the Greedy Strategy

 Optimal solutions:

• change making for “normal” coin denominations

• minimum spanning tree (MST)

• single-source shortest paths 

• simple scheduling problems

• Huffman codes

 Approximations/heuristics:

• traveling salesman problem (TSP)

• knapsack problem

• other combinatorial optimization problems



9-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Change-Making Problem

Given unlimited amounts of coins of denominations d1 > … > dm , 

give change for amount n with the least number of coins

Example:  d1 = 25c,  d2 =10c,  d3 = 5c,  d4 = 1c  and  n = 48c

Greedy solution: 

Greedy solution is

 optimal for any amount and “normal’’ set of denominations

 may not be optimal for arbitrary coin denominations

<1, 2, 0,  3>

For example, d1 = 25c, d2 = 10c, d3 = 1c, and n = 30c

Ex: Prove the greedy algorithm is optimal for the above denominations.

Q: What are the objective function and constraints?
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Minimum Spanning Tree (MST)

 Spanning tree of a connected graph G: a connected acyclic 

subgraph of G that includes all of G’s vertices

 Minimum spanning tree of a weighted, connected graph G: 

a spanning tree of G of the minimum total weight

Example:
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Prim’s MST algorithm

 Start with tree T1 consisting of one (any) vertex and “grow” 

tree one vertex at a time to produce MST through a series of 

expanding subtrees T1, T2, …, Tn

 On each iteration, construct Ti+1 from Ti by adding vertex 

not in Ti that is closest to those already in Ti (this is a 

“greedy” step!)

 Stop when all vertices are included
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Example
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Notes about Prim’s algorithm

 Proof by induction that this construction actually yields an 
MST (CLRS, Ch. 23.1). Main property is given in the next 
page.

 Needs priority queue for locating closest fringe vertex. The 
Detailed algorithm can be found in Levitin, P. 310.

 Efficiency

• O(n2) for weight matrix representation of graph and array 
implementation of priority queue 

• O(m log n) for adjacency lists representation of graph with 
n vertices and m edges and min-heap implementation of the 
priority queue



9-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Another greedy algorithm for MST: Kruskal’s

 Sort the edges in nondecreasing order of lengths

 “Grow” tree one edge at a time to produce MST through a 

series of expanding forests F1, F2, …, Fn-1

 On each iteration, add the next edge on the sorted list 

unless this would create a cycle.  (If it would, skip the edge.)
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Example
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Notes about Kruskal’s algorithm

 Algorithm looks easier than Prim’s but is harder to 

implement (checking for cycles!)

 Cycle checking: a cycle is created iff added edge connects 

vertices in the same connected component

 Union-find algorithms – see section 9.2

 Runs in O(m log m) time, with m = |E|. The time is mostly 

spent on sorting.
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Shortest paths – Dijkstra’s algorithm

Single Source Shortest Paths Problem: Given a weighted 

connected (directed) graph G, find shortest paths from source vertex s

to each of the other vertices

Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with 

a different way of computing numerical labels: Among vertices

not already in the tree, it finds vertex u with the smallest sum

dv +  w(v,u)

where 

v is a vertex for which shortest path has been already found

on preceding iterations (such vertices form a tree rooted at s)

dv is the length of the shortest path from source s to v

w(v,u) is the length (weight) of edge from v to u
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Example
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Notes on Dijkstra’s algorithm

 Correctness can be proven by induction on the number of vertices.

 Doesn’t work for graphs with  negative weights (whereas Floyd’s 
algorithm does, as long as there is no negative cycle). Can you find a 
counterexample for Dijkstra’s algorithm?

 Applicable to both undirected and directed graphs

 Efficiency

• O(|V|2) for graphs represented by weight matrix and array 
implementation of priority queue

• O(|E|log|V|) for graphs represented by adj. lists and min-heap 
implementation of priority queue

 Don’t mix up Dijkstra’s algorithm with Prim’s algorithm! More details 
of the algorithm are in the text and ref books.

We prove the invariants: (i) when a vertex is added to the tree, its correct distance 
is calculated and (ii) the distance is at least those of the previously added vertices.
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Coding Problem

Coding: assignment of bit strings to alphabet characters

Codewords: bit strings assigned for characters of alphabet

Two types of codes:

 fixed-length encoding (e.g., ASCII)

 variable-length encoding (e,g., Morse code)

Prefix-free codes (or prefix-codes): no codeword is a prefix of another codeword

Problem: If frequencies of the character occurrences are
known, what is the best binary prefix-free code?

It allows for efficient (online) decoding! 

E.g. consider the encoded string (msg) 10010110…

E.g.  We can code {a,b,c,d} as {00,01,10,11} or {0,10,110,111} or {0,01,10,101}.

The one with the shortest average code length. The average code length represents 

on the average how many bits are required to transmit or store a character. 

E.g. if P(a) = 0.4, P(b) = 0.3, 

P(c) =  0.2, P(d) = 0.1, then 

the average length of code #2 

is 0.4 + 2*0.3 + 3*0.2 + 3*0.1     

= 1.9 bits



9-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 9

Huffman codes

 Any binary tree with edges labeled with 0’s and 1’s yields a prefix-free 
code of characters assigned to its leaves

 Optimal binary tree minimizing the average

length of a codeword can be constructed 

as follows:

Huffman’s algorithm

Initialize n one-node trees with alphabet characters and the tree weights with 

their frequencies.

Repeat the following step n-1 times: join two binary trees with smallest 

weights  into one (as left and right subtrees) and make its weight equal the 

sum of the weights of the two trees.

Mark edges leading to left and right subtrees with 0’s and 1’s, respectively.

0 1

10

1

represents {00, 011, 1}
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Example

character    A B    C    D      _

frequency  0.35  0.1  0.2  0.2  0.15

codeword    11   100  00   01   101

average bits per character: 2.25

for fixed-length encoding:   3

compression ratio: (3-2.25)/3*100% = 25%
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