Topics

- Minimum Spanning Trees
 - Kruskal
 - Prim

Minimum Spanning Trees (MST)

Spanning Tree

- A spanning tree of **G** is a subgraph which
 - is a tree
 - contains all vertices of **G**

spanning tree of G

Weighted Graphs - Definitions

- Graph G = (V, E)
 - Set of vertices (nodes) and edges connecting them
 - V is a set of vertices:
 - E is a set of edges:

- $V = \{ v_i \}$ E = { (v_i, v_j) }
- w: E → R, w is the weight function from E to Reals.

Weight Graphs - Definitions

- Path
 - A path, p, of length, k, is a sequence of connected vertices
 - $p = \langle v_0, v_1, ..., v_k \rangle$ where $(v_i, v_{i+1}) \in E$

< i, c, f, g, h >
Path of length 4 and
distance 9

< a, b >

Path of length 1 and distance 4

Weighted Graphs - Definitions

- Cycle
 - A graph contains no cycles if there is no path

$$p = \langle v_0, v_1, ..., v_k \rangle$$

such that $v_0 = v_k$

< i, c, f, g, i > is a cycle Weighted Graphs - Definitions

- Spanning Tree
 - A spanning tree is a set of |V|-1 edges that connect all the vertices of a graph

The red path connects all vertices, so it's a spanning tree

Minimum Spanning Tree

- Generally there is more than one spanning tree
- If a weight or cost c_{ij} is associated with edge
 e_{ij} = (v_i,v_j) then the minimum spanning tree is the set of edges E_{span} such that
 C = Σ (c_{ij} | ∀ e_{ij} ∈ Espan)
 is a minimum.

Other ST's can be formed ..

- Replace 2 with 7
- Replace 4 with 11

The red tree is the Min ST

Minimum Spanning Trees

- Undirected, connected graph G = (V, E)
- Weight function W: E → R (assigning cost or length or other values to edges)

 $(u,v) \in T$

- Spanning tree: tree that connects all the vertices (above?)
- Minimum spanning tree: tree that connects all the vertices and minimizes $w(T) = \sum w(u, v)$

Kruskal's Algorithm

- Edge based algorithm
- Add the edges one at a time, in increasing weight order
- The algorithm maintains A a forest of trees. An edge is accepted it if connects vertices of distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets
 - MakeSet(S,x): $S \leftarrow S \cup \{\{x\}\}$
 - $\text{Union}(S_i, S_j): S \leftarrow S \{S_i, S_j\} \cup \{S_i \cup S_j\}$
 - FindSet(S, x): returns unique $S_i \in S$, where $x \in S_i$

Kruskal's Algorithm

• The algorithm adds the cheapest edge that connects two trees of the forest

Kruskal Example

Kruskal Example (2)

Kruskal Example (3)

Kruskal Example (4)

Kruskal Running Time

- Initialization O(V) time
- Sorting the edges $\Theta(E \lg E) = \Theta(E \lg V)$ (why?)
- O(E) calls to FindSet
- Union costs
 - Let t(v) the number of times v is moved to a new cluster
 - Each time a vertex is moved to a new cluster the size of the cluster containing the vertex at least doubles: $t(v) \le \log V$
 - Total time spent doing Union
- Total time: O(E lg V)

$$\sum_{v \in V} t(v) \le |V| \log |V|$$

Prim-Jarnik Algorithm

- Vertex based algorithm
- Grows one tree T, one vertex at a time
- A cloud covering the portion of T already computed
- Label the vertices *v* outside the cloud with *key[v*]

 the minimum weigth of an edge connecting *v* to a vertex in the cloud, *key[v]* = ∞, if no such
 edge exists

Prim-Jarnik Algorithm (2)

```
MST-Prim(G, W, r)
01 Q \leftarrow V[G] // Q - vertices out of T
02 for each u \in O
03 key[u] \leftarrow \infty
04 key[r] ← 0
05 \pi [r] \leftarrow NIL
06 while Q \neq \emptyset do
07 u \leftarrow ExtractMin(Q) / making u part of T
80
          for each v \in Adj[u] do
              if v \in Q and w(u, v) < key[v] then
09
10
                 \pi[v] \leftarrow u
11
                 kev[v] \leftarrow w(u,v)
```

Prim Example

Prim Example (2)

Prim Example (3)

