Topics

 Minimum Spanning Trees
— Kruskal
— Prim

‘ osiSAl \

Minimum Spanning Trees
(MST)

Spanning Tree

» A spanning tree of G is a subgraph which
— IS a tree
— contains all vertices of G

G spanning tree of G

Weighted Graphs - Definitions

Graph G = (V, E)
« Set of vertices (hodes) and edges connecting them

« Vis a set of vertices: r={ v }

« FE is a set of edges: E={(Vi.V;)}

- w: E—=2 R, wis the weight function from E to Reals.

Weight Graphs - Definitions

+ Path

- A path, p, of length, k, is a sequence of
connected vertices

*PT {Vi}ﬁ’h"'avk} where (vi!viﬂ) € E

<iLc,f, g, h>
Path of length 4 and
@ Q '@ distance 9§
4
o /@I i@ cabs

d 1(]

t:{_ _‘(@_ Path of length 1 and
distance 4

Weighted Graphs - Definitions

 Cycle
« A graph contains no cycles if there is no
path

P = <VysV seensV|~
such that v,=v,

@ @@ <i,c,fgi>

Is a cycle

14
}| lﬂ

Weighted Graphs - Definitions

» Spanning Tree

* A spanning tree is a set of |V|-1
edges that connect all the vertices
of a graph

(BFER LI NN N NN NN NN N R LN RN RN R R L I Il R BN R DR B |

|

(B)— (-7
4 2 1 o The red path.cun nects
@ 11 /@f 14 o) all vertices,

g 7 6 10 so it’s a spanning tree
h 1 _(E). 2

—

Minimum Spanning Tree

+ Generally there is more than one spanning tree

« |f a weight or cost Cii Is associated with edge

€ = (vi,vj) then the minimum spanning tree is the
set of edges E_ . such that

C=ZX(c; |V e;e Espan)
IS @ minimum.

[N RN NN NNEY R N

o 4~ _ ~ OtherSTs can be formed ..
: 4@ g 2& ?-@g * Replace 2 with 7
| @I . ﬂ 4. E-) * Replace 4 with 11
|
|
1

3 G 10
‘C@i | _@. 9 The red tree is the

Min ST

Minimum Spanning Trees

« Undirected, connected graph
G=(V,E)
 Weight function W: E - R

(assigning cost or length or
other values to edges)

Spanning tree: tree that connects all the vertices
(above?)

Minimum spanning tree: tree that connects all
the vertices and minimizes W)= 3 w(u,v)

(u,v)eT

Kruskal's Algorithm

Edge based algorithm

Add the edges one at a time, In Increasing
weight order

The algorithm maintains A — a forest of trees.
An edge Is accepted it If connects vertices of
distinct trees

We need a data structure that maintains a
partition, i.e.,a collection of disjoint sets

— MakeSet(S,x): S « S u {{x}}

— Union(S;,S): S < S—{S, S} v {S;u S}

— FindSet(S, x): returns unique S; € S, where X € S,

10

Kruskal's Algorithm

* The algorithm adds the cheapest edge that
connects two trees of the forest

MST-Kruskal (G, w)

01 A « I
02 for each vertex v € V[G] do
03 Make-Set (v)

04 sort the edges of E by non-decreasing weight w

05 for each edge (u,v) € E, 1n order by non-
decreasing weight do

06 if Find-Set (u) # Find-Set(v) then

07 A<« A U {(u,Vv)}

08 Union (u,v)

09 return A

11

Kruskal Example

12

Kruskal Example (2)

13

Kruskal Example (3)

14

Kruskal Example (4)

8 7 8 .
2) (@ (]
9
A 2
4 14 4
‘ 6
10

15

Kruskal Running Time

Initialization O(V) time
Sorting the edges ®(E Ig E) = O(E Ig V) (why?)
O(E) calls to FindSet

Union costs

— Let t(v) — the number of times v is moved to a new
cluster

— Each time a vertex is moved to a new cluster the size
of the cluster containing the vertex at least doubles:
t(v) <log V

— Total time spent doing Union) t(v) <V|log|V|

Total time: O(E Ig V)

16

Prim-Jarnik Algorithm

Vertex based algorithm
Grows one tree T, one vertex at a time

A cloud covering the portion of T already
computed

Label the vertices v outside the cloud with key|V]
— the minimum weigth of an edge connecting v
to a vertex in the cloud, key[v] = o, If no such
edge exists

17

Prim-Jarnik Algorithm (2)

MST-Prim (G, w, r)

0L Q « V[G] // Q — vertices out of T

02 for each u € Q

03 key[u] < o

04 key[r] <« O

05 m[r] <« NIL

06 while Q0 = J do

07 u <« ExtractMin(Q) // making u part of T

08 for each v € Adj[u] do
09 if v € Q and w(u,v) < keyl[v] then
10 T[v] <« u

11 key[v] <« w(u,vVv)

18

Prim Example

19

Prim Example (2)

20

Prim Example (3)

21

