DYNAMIC PROGRAMMING

الدكتور اثير العاني

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems

• Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS

- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2) F(0) = 0F(1) = 1

• Computing the *n*th Fibonacci number recursively (top-down):

 \mathbf{O}

Example: Fibonacci numbers (cont.)

Computing the *n*th Fibonacci number using bottom-up iteration and recording results:

F(0) = 0 F(1) = 1F(2) = 1+0 = 1

... F(n-2) = F(n-1) =F(n) = F(n-1) + F(n-2)

Efficiency:

- space

Examples of DP algorithms

- Computing a binomial coefficient
- Warshall's algorithm for transitive closure
- Floyd's algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
 traveling salesman
 - knapsack

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

Warshall's Algorithm

Constructs transitive closure *T* as the last matrix in the sequence of *n*-by-*n* matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from *i* to *j* with only first *k* vertices allowed as intermediate Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)

Warshall's Algorithm (recurrence)

On the *k*-th iteration, the algorithm determines for every pair of vertices *i*, *j* if a path exists from *i* and *j* with just vertices 1,...,*k* allowed as intermediate

 $R^{(k)}[i,j] = \begin{cases} R^{(k-1)}[i,j] & \text{(path using just 1,...,k-1)} \\ \text{or} \\ R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j] & \text{(path from } i \text{ to } k \\ \text{ and from } k \text{ to } i \end{cases}$

using just 1 ,...,*k*-1)

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

 $R^{(k)}[i,j] = R^{(k-1)}[i,j]$ or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

Rule 1If an element in row *i* and column *j* is 1 in $\mathbb{R}^{(k-1)}$,it remains 1 in $\mathbb{R}^{(k)}$

Rule 2 If an element in row *i* and column *j* is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row *i* and column *k* and the element in its column *j* and row *k* are both 1's in $R^{(k-1)}$

Warshall's Algorithm (example)

Warshall's Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices //Output: The transitive closure of the digraph $R^{(0)} \leftarrow A$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j]$ or $(R^{(k-1)}[i, k]$ and $R^{(k-1)}[k, j])$ return $R^{(n)}$

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, ..., $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:

Floyd's Algorithm (matrix generation)

On the *k*-th iteration, the algorithm determines shortest paths between every pair of vertices *i*, *j* that use only vertices among $1, \ldots, k$ as intermediate

 $D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$

Floyd's Algorithm (example)

$$(0) = \begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{array}{c|ccc} 0 & \infty & 3 & \infty \\ \hline 2 & 0 & 5 & \infty \\ \hline \infty & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{array}$$

Floyd's Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths $D \leftarrow W$ //is not necessary if W can be overwritten for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do $D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}$

return D

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too