
8-0Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

DYNAMIC PROGRAMMING

8-1Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Dynamic Programming

Dynamic Programming is a general algorithm design technique
for solving problems defined by recurrences with overlapping
subproblems

• Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

8-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

...

8-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbers (cont.)

Computing the nth Fibonacci number using bottom-up iteration and

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…

F(n-2) =

F(n-1) =

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

8-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Examples of DP algorithms

• Computing a binomial coefficient

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

- traveling salesman

- knapsack

8-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

4
2

1

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

4
2

1

8-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm

Constructs transitive closure T as the last matrix in the sequence

of n-by-n matrices R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only first k

vertices allowed as intermediate

Note that R(0) = A (adjacency matrix), R(n) = T (transitive closure)

3

42

1
3

42

1
3

42

1

3

42

1

R(0)

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(1)

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(2)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(4)

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

42

1

8-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of

vertices i, j if a path exists from i and j with just vertices 1,…,k

allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)

R(k)[i,j] = or

R(k-1)[i,k] and R(k-1)[k,j] (path from i to k

and from k to i

using just 1 ,…,k-1)
i

j

k

{

8-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1),

it remains 1 in R(k)

Rule 2 If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)

8-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (example)

3

42

1 0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(0) =

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(1) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(2) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3) =

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

R(4) =

8-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

8-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

8-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths

between every pair of vertices i, j that use only vertices among

1,…,k as intermediate

D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

8-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (example)

0 ∞ 3 ∞

2 0 ∞ ∞

∞ 7 0 1

6 ∞ ∞ 0

D(0) =

0 ∞ 3 ∞

2 0 5 ∞

∞ 7 0 1

6 ∞ 9 0

D(1) =

0 ∞ 3 ∞

2 0 5 ∞

9 7 0 1

6 ∞ 9 0

D(2) =

0 10 3 4

2 0 5 6

9 7 0 1

6 16 9 0

D(3) =

0 10 3 4

2 0 5 6

7 7 0 1

6 16 9 0

D(4) =

3
1

3

2

6 7

4

1 2

8-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too

