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Dynamic Programming
1.
Dynamic Programming IS a general algorithm design technigue

for solving problems defined by recurrences with overlapping
subproblems

o [nvented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by €S

s “Programming’” here means “planning”

o Main idea:
- Set up a recurrence relating a solution to a larger instance
to solutions ofisome smaller instances
- solve smaller instances once
- record solutions in a table

= - extract solution: to the initial instance from that table
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Example: Eibonaccl nUmIBErRS
rrs

o Recall defimition ofi Ribonacclr numbers:

F(n) = Fn-1) + F(n-2)
= (0))=30)
F(1) =1

» Computing the Nt Fibonaccl nUmPEr: recursively (top-cdown):

F(n-1)— + —— F(n-2)
F(n-‘z)/+\|5(n-3) F(n-/ﬁ\-l-\ F(n-4)
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Example: Filbonacer numbers (cont.)
1.

Computing the N Fibonacci number: using bottom-up iteration and
recording results:

=)=
F) =1
F@2)=1+0=1

i:.in-Z) -
FE(n-1) =
F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- Space
<~
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Examples of DR algorithms
1.

Computing a binomial coefficient

\Warshall’s algorithm for transitive closure

Floyd’s algorithm for all-pairs shortest paths

Constructing an optimal binary searchi tree

Some instances of difficult discrete optimization problems:
- traveling salesman
- knapsack
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Warshall’s Algorithm: Tiransitive C|OSlir’e’

o Alternatively: existence of all'nontrivial paths in a digraph

- Computes the transitive closure of:a relation

» Example of transitive closure:

o« P

0010 0010
1001 1111
0000 0000
0100 1111
- ™
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Warshall>s Algorithm
I'rr

Constructs transitive closure T as the last matrix in the seqtience™
of:n-by-n matrices RY, ... RW ... R@W where

RM[ij] = 1 iff there is nontrivial path from i'to j with only first K

vertices allowed as intermecaiate

Note that R = A (adjacency matrix), RW="T: (transitive closure)
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\Warshall’s: Algorithm (recurrence)
rrs

On the k-th iteration, the algorithm determinges for every pair of
VErtices I, | It a path exists fromi i'and jwith just vertices 1.,... K
allowed as intermediate

RSO ] (pathiusing just 1 ... k-1)
RO = or
R&DNiK] and R&DIK ] (path from i to k
and from K to i
using just 1 ,...,K-1)
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Warshall’s Algorithm: (matrix generation)
r'rr

Recurrence relating elements R® to elements of R&D is:

ROl = R&D[ij] or (R&D[i k] and R&I[k i)

It implies the following rules for generating R from RED:

Rule 1 Ifian element in row i'and column jiis 1 in R&D]
It remains 1 in R®

Rule 2 If-an element in row irand column jiis 0rin RE!

It has to be changed to 1 in RWifiand only. if

the element inits row irand column k and the element
— In its column jjand row k are both 1°s in R
- m
- m
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Warshall’s' Algorithm (example)
{11,

8

W__r
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Warshall’s Algorithm (pseudocode and analysis)
r'rs

ALGORITHM  Warshall(A[1..n, 1..n])

/Mmplements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO «— A
fork <~ 1tondo
fori < 1tondo
for j < 1tondo
RM[i, j1 < R*V[i, jlor (R*V[i k]and R* D[k, j])
return R

Thime efficiency: ©(n°)

~Space efficiency: Matrices can be Written oVer: thelr Prececessors
o
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Floyd®s Algorithm: All pairs shortest patns
rrr

Problem: In aweighted (di)graph, find shortest paths between
EVEery pair of VEFTICES

Same idea: construct solution through series of: matrices DO ...,
D W using increasing subsets of the vertices allowed

as intermediate

Example: I
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Floyd’s Algorithm: (matrix generation)
rrr

On the k-th iteration, the algorithm determines shortest paths
PetWeen every pair of: VEFHICES I, J that use only Vertices among
1,... kas intermediate

DOl = min {D&Y]i], DEOfik] + DEDIK 1}

DED[iK]

~. Dk k,j]

DI s ;
ﬁ
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Floyd’s Algorithm (example)
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Floyd®s Algorithm (psetidocode and analysis)
I'r!

ALGORITHM Floyd(W[l..n, 1..n])

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
/[Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths

D <« W //is not necessary if W can be overwritten

for k < 1tondo
fori < 1tondo
for j < 1tondo
D[i, j] < min{D[i, j], D[i, k] + D[k, j]}

return D

Thime efficiency: ©(n°)
Space efficiency: Matrices can e Written oVer: thelr Preadecessors

- :\Iote: Shortest paths themselves can be found, too
/<
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