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DYNAMIC PROGRAMMING
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Dynamic Programming

Dynamic Programming  is  a general algorithm design technique 
for solving problems defined by recurrences with overlapping
subproblems

• Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance  

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table 
- extract solution to the initial instance from that table
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Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

...
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Example: Fibonacci numbers  (cont.)

Computing the nth Fibonacci number using bottom-up iteration and 

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…    

F(n-2) = 

F(n-1) = 

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space
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Examples of DP algorithms

• Computing a binomial coefficient

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

- traveling salesman

- knapsack
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Warshall’s  Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:
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Warshall’s  Algorithm

Constructs transitive closure T as the last matrix in the sequence 

of n-by-n matrices  R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only first k 

vertices allowed as intermediate 

Note that R(0) = A (adjacency matrix), R(n) = T  (transitive closure)
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Warshall’s  Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of 

vertices i, j if a path exists from i and j with just vertices 1,…,k 

allowed as intermediate

R(k-1)[i,j]                            (path using just 1 ,…,k-1)

R(k)[i,j] =            or 

R(k-1)[i,k]  and R(k-1)[k,j]    (path from i to k

and from k to i

using just 1 ,…,k-1)
i

j

k

{
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Warshall’s  Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is: 

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1), 

it remains 1 in R(k)

Rule 2  If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if 

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)
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Warshall’s Algorithm (example)
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Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors
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Floyd’s Algorithm: All pairs shortest paths

Problem:    In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3
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Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths 

between every pair of vertices i, j that use only vertices among 

1,…,k as intermediate

D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]}
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Floyd’s Algorithm (example)
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Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too


