DYNAMIIC PROGRAIMIMING

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
- set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

Example: Ribonacci numbers

- Recall definition of Ribonacei numbers:

$$
\begin{aligned}
& F(n)=F(n-1)+F(n-2) \\
& F(0)=0 \\
& F(1)=1
\end{aligned}
$$

- Computing the $n^{\text {iI }}$ nibonacci number recursively (top-down):

Example: RHbonacci numbers (cont.)

Computing the $n^{\text {th }}$ Fibonacci number using bottom-up iteration and recording resultis:

```
\(F(0)=0\)
\(F(1)=1\)
\(F(2)=1+0=1\)
...
\(H(n-2)=\)
\(F(n-1)=\)
\(F^{\prime}(n)=F^{\prime}(n-1)+F^{\prime}(n-2)\)
```

| 0 | 1 | 1 | \ldots | $F(n-2)$ | $F(n-1)$ | $F(n)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Efficiency:

- time
- space

Examples of DP algorithms

- Computing a binomial coefificient
- Warshall's algorithm for transitive closure
- Floyd's algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimivation problems:
- traveling salesman
- knapsack

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

0	0	1	0
1	0	0	1
0	0	0	0
0	1	0	0

$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}$
0000
1111

Warshall's Algorithm

Constructs transitive closure I' as the last matrix in the sequence of n-by- n matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i, j]=1$ ifi there is nontrivial path from i to j with only first k vertices allowed as intermediate
Note that $R^{(0)}=A$ (adjacency matrix), $R^{(n)}=I^{\prime}$ (transitive closure)

$R^{(1)}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}$
0010
$R^{(2)}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \mathbf{1} & 1 & \mathbf{1} & \mathbf{1}\end{array}$

$R^{(3)}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$

$R^{(4)}$
0010
1111
0000
1111

Warshall's Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices $1, \ldots, k$ allowed as intermediate

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$
R^{(k)}[i, j]=R^{(k-1)}[i, j] \text { or }\left(R^{(k-1)}[i, k] \text { and } R^{(k-1)}[k, j]\right)
$$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$

Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1 's in $R^{(k-1)}$

Warshall's Algorithm (example)

$$
\left.R^{(0)}=\begin{array}{|llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array} \quad R^{(1)}=\begin{array}{|llll}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array} \right\rvert\,
$$

$$
R^{(2)}=\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\mathbf{1} & 1 & \mathbf{1} & \mathbf{1}
\end{array}
$$

$R^{(4)}=$	0	0	1	0
1	$\mathbf{1}$	1	1	
0	0	0	0	
1	1	1	1	

Warshall's Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
$R^{(0)} \leftarrow A$
for $k \leftarrow 1$ to n do

$$
\text { for } i \leftarrow 1 \text { to } n \text { do }
$$

for $j \leftarrow 1$ to n do
$R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j]$ or $\left(R^{(k-1)}[i, k]\right.$ and $\left.R^{(k-1)}[k, j]\right)$
return $R^{(n)}$

Time efficiency: $\Theta\left(n^{3}\right)$

Space efficiency: Matrices can be written over their predecessors

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}, \ldots$, $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:

Floyd's Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1, \ldots .0, k$ as intermediate

$$
D^{(k)}[i, j]=\min \left\{D^{(k-1)}[i, j], D^{(k-1)}[i, k]+D^{(k-1)}[k, j]\right\}
$$

Floyd's Algorithm (example)

$$
D^{(1)}=\begin{array}{ccccc}
0 & \infty & 3 & \infty \\
2 & 0 & 5 & \infty \\
\infty & 7 & 0 & 1 \\
6 & \infty & \mathbf{9} & 0
\end{array}
$$

$$
D^{(2)}=\begin{array}{ccc|c}
0 & \infty & 3 & \infty \\
2 & 0 & 5 & \infty \\
\mathbf{9} & 7 & 0 & 1 \\
6 & \infty & 9 & 0
\end{array} \quad D^{(3)}=\begin{array}{cccc|c}
0 & \mathbf{1 0} & 3 & \mathbf{4} \\
2 & 0 & 5 & \mathbf{6} \\
9 & 7 & 0 & 1 \\
6 & \mathbf{1 6} & 9 & 0
\end{array} \quad D^{(4)}=\begin{array}{ccccc}
0 & 10 & 3 & 4 \\
2 & 0 & 5 & 6 \\
\mathbf{7} & 7 & 0 & 1 \\
6 & 16 & 9 & 0
\end{array}
$$

Floyd's Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths
$D \leftarrow W / /$ is not necessary if W can be overwritten
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do

$$
D[i, j] \leftarrow \min \{D[i, j], D[i, k]+D[k, j]\}
$$

return D

Time efficiency: $\Theta\left(n^{3}\right)$

Space efficiency: Matrices can be written over their predecessors
Note: Shortest paths themselves can be found, too

