
1AL Anbar university- college of Computer
Information Systems Department

Chapter One

Basic Concepts inAlgorithmic Analysis

1.1 Introduction:

An algorithm is a computational procedure that consists of a finite set of
instructions which, given an input from some set of possible inputs, enables us to
obtain an output if such an output exists or else obtain nothing at all if there is no
output for that particular input through a systematic execution of the instructions. A
well-defined sequence of computational steps that accepts a set of values as
input and produces a set of values as output.

In particular, we may be interested in finding the most efficient algorithm
for solving a particular problem (Efficiency). An algorithm can be represented by:

1. Flowcharts.
2. Pseudo Codes.
3. Prose Codes (Pseudo + Documentation).

 Algorithm Analysis: is an abstract or mathematical comparisons between
algorithms - without implementing them - by specifying the time and the space
needed for solving that algorithm.

 Algorithm Design: is a set of methods, ideas, and tricks for developing a fast
algorithm. It is observed that the number of basic design techniques is
reasonably small.

Computational problems
• A computational problem specifies an input-output
relationship
 What does the input look like?
 What should the output be for each input?

• Example:
 Input: an integer number n

Example : The problem of sorting:
- Input : a sequence of n numbers: a1,a2,.....an
- Output : a reordering of the input: a'1,a'2,.....a'n

where a'1 <= a'2<=.....<=a'n

2AL Anbar university- college of Computer
Information Systems Department

 Output: Is the number prime?

• Example:
 Input: A list of names of people
 Output: The same list sorted alphabetically

• Example:
 Input: A picture in digital format
 Output: An English description of what the picture shows.

Algorithms specification
• A tool for solving a well-specified computational problem
• Algorithms must be:
 Correct: For each input produce an appropriate output
 Efficient: run as quickly as possible, and use as little memory as
possible – more about this later.

Components of an Algorithm

 •Algorithm name
 Input
 Output
 Variables and values
 Instructions
 Procedures name (involving instructions)
 Selections (between instructions)
 Repetitions
 Documentation

Values & Variables
• Represent quantities, amounts or measurements
• May be numerical or alphabetical (or other things)
• Often have a unit related to their purpose

3AL Anbar university- college of Computer
Information Systems Department

• Example:
procedure Sum1_to_n(num)
{
// do initialization
count = 1
sum = 0
while (count <= num)

{
add count to sum
add 1 to count
}
}

1.7 WhyAnalyze Algorithms?
There may be several different ways to solve a particular problem. For

example, there are several methods for sorting numbers. How can you decide
which method is the best in a certain situation? How would you define "best" – is
it the fastest method or the one that takes up the least amount of memory space?

Understanding the relative efficiencies of algorithms designed to do the
same task is very important in every area of computing. This is how computer
scientists decide which algorithm to use for a particular application. As mentioned
earlier, an algorithm can be analyzed in terms of time efficiency or space utilizati
on. We will consider only the former right now. The running time of an algorithm
is influenced by several factors:

1) Speed of the machine running the program
2) Language in which the program was written. For example, programs written in

assembly language generally run faster than those written in C or C++, which
in turn tend to run faster than those written in Java.

3) Efficiency of the compiler that created the program
4) The size of the input: processing 1000 records will take more time than

processing 10 records.
5) Organization of the input: if the item we are searching for is at the top of the

list, it will take less time to find it than if it is at the bottom.

The first three items in the list are problematic. We don’t want to use an
exact measurement of running time: To say that a particular algorithm written in
C++ and running on a Pentium IV takes some number of milliseconds to run tells
us nothing about the general time efficiency of the algorithm, because the
measurement is specific to a given environment. The measurement will be of no

Instruction

Repetition

4AL Anbar university- college of Computer
Information Systems Department

use to someone in a different environment. We need a general metric for the time
efficiency of an algorithm; one that is independent of processor or language
speeds, or compiler efficiency. The fourth item in the list is not environment-
specific, but it is an important consideration. An algorithm will run slower if it must
process more data but this decrease in speed is not because of the construction
of the algorithm. It's simply because there is more work to do. As a result of this
consideration, we usually express the running time of an algorithm as a
function of the size of the input. Thus, if the input size is n, we express the
running time as T(n). This way we take into account the input size but not as a
defining element of the algorithm. Finally, the last item in the list requires us to
consider another aspect of the input, which again is not part of the actual
algorithm.

Algorithm Analysis: The Big-O Notation

Just as a problem is analyzed before writing the algorithm and the computer
program, after an algorithm is designed it should also be analyzed. Usually, there
are various ways to design a particular algorithm. Certain algorithms take very little
computer time to execute, whereas others take a considerable amount of time.
Let us consider the following problem. The holiday season is approaching and a
gift shop is expecting sales to be double or even triple the regular amount. They
have hired extra delivery people to deliver the packages on time. The company
calculates the shortest distance from the shop to a particular destination and
hands the route to the driver. Suppose that 50 packages are to be delivered to 50
different houses. The shop, while making the route, finds that the 50 houses are
one mile apart and are in the same area. (See Figure 1-1, in which each dot
represents a house and the distance between houses is 1 mile.)

FIGURE 1-1 Gift shop and each dot representing a house

To deliver 50 packages to their destinations, one of the drivers picks up all 50
packages, Drives one mile to the first house and delivers the first package. Then
he drives another mile and delivers the second package, drives another mile and
delivers the third package, and so on.

Gift
shop

Gift
shop

5AL Anbar university- college of Computer
Information Systems Department

Figure 1-2 illustrates this delivery scheme.

It now follows that using this scheme, the distance driven by the driver to deliver
the packages is: 1 + 1+ 1+ …. + 1 =50 miles
Therefore, the total distance traveled by the driver to deliver the packages and
then getting back to the shop is:
50 + 50 = 100 miles
Another driver has a similar route to deliver another set of 50 packages. The driver
looks at the route and delivers the packages as follows: The driver picks up the
first package, drives one mile to the first house, delivers the package, and then
comes back to the shop. Next, the driver picks up the second package, drives 2
miles, delivers the second package, and
then returns to the shop. The driver then picks up the third package, drives 3
miles, delivers the package, and comes back to the shop. Figure 1-3 illustrates this
delivery scheme.

The driver delivers only one package at a time. After delivering a package, the
driver comes back to the shop to pick up and deliver the second package. Using
this scheme, the total distance traveled by this driver to deliver the packages and
then getting back to the store is: 2 * (1 + 2 + 3 + . . . + 50) = 2550 miles
Now suppose that there are n packages to be delivered to n houses, and each
house is one mile apart from each other, as shown in Figure 1-1. If the packages
are delivered using the first scheme, the following equation gives the total distance
traveled: 1 +1+ . . . + 1+ n = 2n … (1-1)
If the packages are delivered using the second method, the distance traveled is:
2 * (1 + 2 +3 + . . . + n) = n2 + n ... (1-2)
In Equation (1-1), we say that the distance traveled is a function of n. Let us
consider
Equation (1-2). In this equation, for large values of n, we will find that the term
consisting of n2 will become the dominant term and the term containing n will be
negligible. In this case, we say that the distance traveled is a function of n2. Table
1-1 evaluates Equations (1-1) and (1-2) for certain values of n. (The table also
shows the value of n2.)

Gift
shop

6AL Anbar university- college of Computer
Information Systems Department

Consider the following algorithm. (Assume that all variables are properly declared.)

Line 1 has one operation, <<; Line 2 has two operations; Line 3 has one operation,
>=; Line 4 has one operation, =; Line 6 has one operation; and Line 7 has three
operations. Either Line 4 or Line 6 executes. Therefore, the total number of
operations executed in the preceding code is 1 + 2 + 1 + 1 + 3 = 8. In this
algorithm, the number of operations executed is fixed.

Problem of search
Input: array of integer numbers [1...n], integer number x
Output: return the index of x if it found otherwise return -1
1. read x
2. for (int i=0; i<n; i++)
3. if(x==arr[i])
4. k=i;
5. if (k==0)
6. cout<<-1;
7. else
8. cout<<k;

:أخرىبطريقة
While (arr [i] != x)
i++;
if (i>n)
cout<< -1;

else
cout<< i;

EXAMPELE: 1

cout << "Enter two numbers"; //Line 1
cin >> num1 >> num2; //Line 2
if (num1 >= num2) //Line 3
max = num1; //Line 4
else //Line 5
max = num2; //Line 6
cout << "The maximum number is: " << max << endl; //Line 7

T(n) = 8 = O(1)

7AL Anbar university- college of Computer
Information Systems Department

When n=4
i j statement

0 1 3

2
3
4

1 2 2

3
4

2 3 1

4

3 4

4

For(int i=0; i<n; i++) n+1
For(j=0; j<n ; j++) n(n+1)
Cout<< array[i][j] n2

T(n) = 2n2 + 2n + 1 = O(n2)

Array Re ordering:

For(i=0; i<n-1 ; i++) n
For(j=I+1; j<n; j++) n (n+1) /2 -1
Cout<< array[i] n (n-1) /2 -2

T(n) = n+n(n+1)/2 -1 + n (n-1) /2 -2
= n+n2 /2+n/2 +n2/2+n/2 -3
= n+n2 +n-3
= n2 +2n-3 =O(n2)

For (i=0; i<n; i++) n+1
For (j=i+1; j<n; j++) n(n+1)/2
Statement; n(n+1)/2 -1

T(n)=n+1+n(n+1)/2 + n(n+1)/2 -1
=n+n2/2 + n/2 + n2/2 + n/2
=n+n2 +n
=n2+2n = O(n2)

8AL Anbar university- college of Computer
Information Systems Department

TABLE 1-1 Various values of n, 2n, n2, and n2 + n

10,000 20,000 100,0000,0000 100,010,000
1000 2000 1,000,000 1,001,000
100 200 10,000 10,100
10 20 100 110
1 2 1 2
N 2n n2 n2 + n

While analyzing a particular algorithm, we usually count the number of
operations Performed by the algorithm. We focus on the number of operations,
not on the actual Computer time to execute the algorithm. This is because a
particular algorithm can be implemented on a variety of computers and the speed
of the computer can affect the execution time. However, the number of
operations performed by the algorithm would be the same on each
computer. Let us consider the following examples.

For (I=1; I<n;) log n+1
{

Cout<<I; log n
I = I *2; log n

}
T(n) = log2 n+1

For (i=n; i>=1; i=i/2) log n+1
S=s+I log n
T(n) = log n+1 = O(logn)
For(i=1; i< n; i++) n

For(j=1; j<=n; j ٢*=) n (log n+1)
Sum =sum+ x n log n

T(n)=n + n (logn+1) + n logn
= n+ nlog n +n + nlogn =2n + 2nlogn

When n=10
For(i=1; i<n; i=i+3) (n-1)/3 +1

Statement ; (n-1)/3

For(i=1; i<17; i=i+4) (17-1)/4 +1
Statement; (17-1)/4

9AL Anbar university- college of Computer
Information Systems Department

Consider the following algorithm:

cout << "Enter positive integers ending with -1" << endl; //Line1
count = 0; //Line2
sum = 0; //Lin3
cin >> num; //Lin4
while (num != -1) //Lin5
{
sum = sum + num; //Line6
count++; //Line7
cin >> num; //Line8
}
cout << "The sum of the numbers is: " << sum << endl; //Line9
if (count != 0) //Line10
average = sum / count; //Line11
else //Line 12
average = 0; //Line 13
cout << "The average is: " << average << endl; //Line 14

This algorithm has 5` operations (Lines 1 through 4) before the while loop.
S imilarly, there are nine or eight operations after the while loop, depending on
whether Line 11 or Line 13 executes. Line 5 has one operation, and four
operations within the while loop (Lines 6 through 8).
Thus, Lines 5 through 8 have five operations. If the while loop executes 10 times,
these five operations execute 10 times. One extra operation is also executed at
Line 5 to terminate the loop. Therefore, the number of operations executed is 51
from Lines 5 through 8.
If the while loop executes 10 times, the total number of operations executed is:

10 * 5 + 1 + 5 + 8
that is: 10 * 5 +14

We can generalize it to the case when the while loop executes n times. If the while
loop
executes n times, the number of operations executed is:

5n + 15 or 5n + 14

In these expressions, for very large values of n, the term 5n becomes the
dominating term and the terms 15 and 14 become negligible.
Usually, in an algorithm, certain operations are dominant. For example, in the
preceding algorithm, to add numbers, the dominant operation is in Line 6.
Similarly, in a search algorithm, because the search item is compared with the

EXAMPLE: 1-2

10AL Anbar university- college of Computer
Information Systems Department

items in the list, the dominant operations would be comparison, that is, the
relational operation. Therefore, in the case of a search algorithm, we count the
number of comparisons. For another example, suppose that we write a program to
multiply matrices. The multiplication of matrices involves addition and
multiplication. Because multiplication takes more computer time to execute, to
analyze a matrix multiplication algorithm, we count the number of multiplications.
In addition to developing algorithms, we also provide a reasonable analysis of
each algorithm. If there are various algorithms to accomplish a particular task, the
algorithm analysis allows the programmer to choose between various options.
Suppose that an algorithm performs f(n) basic operations to accomplish a task,
where n is the size of the problem. Suppose that you want to determine whether
an item is in a list. Moreover, suppose that the size of the list is n. To determine
whether the item is in the list, there are various algorithms, as you will see in
Chapter 9. However, the basic method is to compare the item with the items in the
list. Therefore, the performance of the algorithm depends on the number of
comparisons.
Thus, in the case of a search, n is the size of the list and f(n) becomes the count
function, that is, f(n) gives the number of comparisons done by the search
algorithm. Suppose that, on a particular computer, it takes c units of computer time
to execute one operation. Thus, the computer time it would take to execute
f(n) operations is c f(n). Clearly, the constant c depends on the speed of the
computer and, therefore, varies from computer to computer. However, f(n), the
number of basic operations, is the same on each computer. If we know how the
function f(n) grows as the size of the problem grows, we can determine the
efficiency of the algorithm. Consider Table 1-2.

TABLE 1-2 Growth rates of various functions

32 5 160 1024 4,294,967,296
16 4 64 256 65,536
8 3 24 64 256
4 2 8 16 16
2 1 2 4 4
1 0 0 1 2
N Log2n n log2n n2 2n

Table 1-2 shows how certain functions grow as the parameter n, that is, the
problem size, grows. Suppose that the problem size is doubled. From Table 1-2, it
follows that if the number of basic operations is a function of f(n) = n2, the number
of basic operations is quadrupled. If the number of basic operations is a function

11AL Anbar university- college of Computer
Information Systems Department

of f(n) = 2n, the number of basic operations is squared. However, if the number of
operations is a function of f(n) = log2n, the change in the number of basic
operations is insignificant

The remainder of this section develops a notation that shows how a function f(n)
grows as n increases without bound. That is, we develop a notation that is
useful in describing the behavior of the algorithm, which gives us the most
useful information about the algorithm.
First, we define the term asymptotic. Let f be a function of n. By the term
asymptotic, we mean the study of the function f as n becomes larger and larger
without bound.
Consider the functions g(n) =n2 and f(n) = n2 + 4n + 20. Clearly, the function g
does not contain any linear term, that is, the coefficient of n in g is zero. Consider
Table 1-4.

TABLE 1-4 Growth rate of n2 and n2 + 4n + 20

10,000 100,000,000 100,040,020
1000 1,000,000 1,004,020
100 10,000 10,420
50 2500 2720
10 100 160

n g(n) = n2 f(n)=n2+4n+20

Clearly, as n becomes larger and larger the term 4n + 20 in f(n) becomes
insignificant, and the term n2 becomes the dominant term. For large values of n,
we can predict the
behavior of f(n) by looking at the behavior of g(n). In algorithm analysis, if the
complexity of a function can be described by the complexity of a quadratic function
without the linear term, we say that the function is of O(n2), called Big-O of n2.
Let f and g be real-valued functions. Assume that f and g are nonnegative, that is,
for all real numbers n, f(n) >= 0 and g(n) >= 0.
Definition: We say that f(n) is Big-O of g(n), written f(n) = O(g(n)), if there exists
positive constants c and n0 such that f(n) <=cg(n) for all n >= n0.

In the following, f(n) is a nonnegative real-valued function.

Example: 1-5

12AL Anbar university- college of Computer
Information Systems Department

Function Big-O
f (n) = an + b, where a and b are real numbers and a is nonzero. f (n) =O(n)
f (n) = n2 + 5n + 1 f (n)=O(n2)
f (n) = 4n6 + 3n3 + 1 f (n)=O(n6)
f (n) = 10n7 + 23 f (n) =O(n7)
f (n) = 6n15 f(n)=O(n15)

Suppose that f(n) = 2 log2n + a, where a is a real number. It can be shown that
f(n)=O(log2n).

Consider the following code, where m and n are int variables and their values are
nonnegative:

for (int i = 0; i < m; i++) //Line 1
for (int j = 0; j < n; j++) //Line 2
cout << i * j << endl; //Line 3

This code contains nested for loops. The outer for loop, at Line 1, executes m
times. For each iteration of the outer loop, the inner loop, at Line 2, executes n
times. For each iteration of the inner loop, the output statement in Line 3 executes.
It follows that the total number of iterations of the nested for loop is mn. So the
number of times the statement in Line 3 executes is mn. Therefore, this algorithm
is O(mn). Note that if m = n, then this algorithm is O(n2).

Table 1-5 shows some common Big-O functions that appear in the algorithm
analysis.
Let f(n) =O(g(n)) where n is the problem size.

TABLE 1-5 Some Big-O functions that appear in algorithm analysis

g (n) = 1 The growth rate is constant and so does not depend on n, the size
of the problem

Function g (n) Growth rate of f (n)

Example: 1-6

Example: 1-7

13AL Anbar university- college of Computer
Information Systems Department

g (n) = 2n The growth rate is exponential. The growth rate is squared when
the problem size is doubled.

g (n) = n2 The growth rate of such functions increases quickly with the size
of the problem. The growth rate is quadrupled when the problem
size is doubled.

g (n) =nlog2n The growth rate is faster than the linear algorithm.

g (n) =n The growth rate is linear. The growth rate of f is directly
proportional to the size of the problem.

g (n) =log2n The growth rate is a function of log2n. Because a logarithm
function grows slowly, the growth rate of the function f is also slow.

Analyzing Some Simple Programs

General Rules:

1) All basic statements (assignments, reads, writes, conditional testing, library
calls) run in constant time: O(1).

2) The time to execute a loop is the sum, over all times around the loop, of the
time to execute all the statements in the loop, plus the time to evaluate the
condition for termination. Evaluation of basic termination conditions is O(1) in
each iteration of the loop.

3) The complexity of an algorithm is determined by the complexity of the most
frequently executed statements. If one set of statements have a running time

14AL Anbar university- college of Computer
Information Systems Department

of O(n3) and the rest are O(n), then the complexity of the algorithm is O(n3).
This is a result of the Summation Rule.

Example 1
Compute the big-Oh running time of the following C++ code segment:

for (i = 2; i < n; i++)
sum += i

The number of iterations of a for loop is equal to the top index of the loop minus
the bottom index, plus one more instruction to account for the final conditional test.
Note: if the for loop terminating condition is i <= n, rather than i < n, then the
number of times the conditional test is performed is:

((top_index) – bottom_index) + 1)

In this case, we have n - 2 + 1 = n - 1. The assignment in the loop is
executed n - 2 times. So, we have (n - 1) + (n - 2) = (2n - 3) instructions executed
= O(n).

Complexity problems may ask for "number of instructions executed"
which means you need to provide an equation in terms of n of the precise number
of instructions executed. Or, we may just ask for the complexity in which case you
need only provide a big-Oh (or big-Theta) expression.

Example 2
Consider the sorting algorithm shown below. Find the number of instructions

executed and the complexity of this algorithm.
.

1) for (i = 1; i < n; i++)
2) { SmallPos = i;
3) Smallest = Array[SmallPos];
4) for (j = i+1; j <= n; j++) n(n+1)/2 -1
5) if (Array[j] < Smallest)

{
6) SmallPos = j;
7) Smallest = Array[SmallPos]

}
8) Array[SmallPos] = Array[i];
9) Array[i] = Smallest; }

assume n=4

I j N0.of times
1 2

3
4
5 3

2 3
4
5 2

3 4
5 1

4

15AL Anbar university- college of Computer
Information Systems Department

Statement 1 is executed n times (n - 1 + 1); statements 2, 3, 8, and 9 are
executed (n – 1) times each, once on each pass through the outer loop. On the
first pass through this loop with i = 1, statement 4 is executed n times; statement 5
is executed n - 1 times, and assuming a worst case where the elements of the
array are in descending order, statements 6 and 7 are executed n - 1 times.

On the second pass through the outer loop with i = 2, statement 4 is
executed n - 1 times and statements 5, 6, and 7 are executed n - 2 times, etc.
Thus, statement 4 is executed (n) + (n-1) +... + 2 times and statements 5, 6, and 7
are executed (n-1) + (n-2) + ... + 2 + 1 times. The first sum is equal to n(n+1)/2 –1,
and the second is equal to n(n-1)/2.

Thus, the total computing time is:

T(n) = (n) + 4(n-1) + n(n+1)/2 – 1 + 3[n(n-1) / 2]
= n + 4n - 4 + (n2 + n)/2 – 1 + (3n2 - 3n) / 2
= 5n - 5 + (4n2 - 2n) / 2
= 5n - 5 + 2n2 - n
= 2n2 + 4n - 5
= O(n2)

Example 3
The following program segment initializes a two-dimensional array A (which

has n rows and n columns) to be an n x n identity matrix – that is, a matrix with 1’s
on the diagonal and 0’s everywhere else. More formally, if A is an n x n ident ty
matrix, then:

A x M= Mx A = M, for any n x n matrix M.

What is the complexity of this C++ code?

1) cin >> n; // Same as: n = GetInteger();
2) for (i = 1; i <= n; i ++)
3) for (j = 1; j <= n; j ++)
4) A[i][j] = 0;
5) for (i = 1; i <= n; i ++)
6) A[i][i] = 1;

A program such as this can be analyzed in parts, and then we can use the
summation rule to find a total running time for the entire program. Line 1 takes
O(1) time. The instructions in lines 5 and 6 are executed O(n) times. The
instructions in lines 3 and 4 are executed n times every time we execute this loop.
The outer loop of line 2 is executed n times, yielding a time complexity of O(n2),
due to the inner loop begin executed O(n) times. Thus the running time of the

16AL Anbar university- college of Computer
Information Systems Department

segment is O(1) + O(n2) + O(n). We apply the summation rule to conclude that the
running time of the segment is O(n2).

Example 4
Consider the following two examples of nested loops intended to sum each of the
rows of an N × N matrix, storing the row sums in the one-dimensional vector rows
and the overall total in Grand Total:
- Program - 1:

GrandTotal = 0;
for (int k = 0 ; k < n-1 ; ++k)
{

rows[k] = 0;
for (int j = 0 ; j < n-1 ; ++j)
{

rows[k] = rows[k] + matrix[k][j];
GrandTotal = GrandTotal + matrix[k][j];

}
- }

- Program - 2: GrandTotal = 0;

for (int k = 0 ; k < n-1 ; ++k)
{

rows[k] = 0;

for (int j = 0 ; j < n-1 ; ++j)
rows[k] = rows[k] + matrix[k][j];

GrandTotal = GrandTotal + rows[k];
}

1.2 Algorithm Design Techniques:

1. Incremental Technique:
Examples: Bubble sort, Insertion sort, Selection sort.

2. Divide and Conquer Technique:
Examples: Merge sort, Quick sort, Binary Search.

3. Dynamic Technique:

17AL Anbar university- college of Computer
Information Systems Department

Examples: Fiboncis numbers, Matrix chain multiplication , Knapsack
problem.

4. Greedy Technique:
Examples: Shortest path problem, Kruskal's algorithm, Prim's algorithm.

5. Graph Technique:
Examples: Depth-first search, Breadth-first search.

We will start with some simple algorithms related to searching and
sorting, then we will present the basic concepts used in the design and analysis of
algorithms.

1.3 Linear Search Problem:

Consider the problem of determining whether a given element x is in A.
This problem can be rephrased as follows: Find an index j; 0 ≤ j ≤ n-1, such that x
= A[j] if x is in A, and j = -1 otherwise. A straightforward approach is to scan the
entries in A and compare each entry with x. If after j comparisons, 0 ≤ j ≤ n-1, the
search is successful, i.e., x = A[j], j is returned; otherwise a value of -1 is returned
indicating an unsuccessful search. This method is referred to as sequential
search. It is also called linear search, as the maximum number of element
comparisons grows linearly with the size of the sequence. The algorithm is shown
as Algorithm LINEARSEARCH:

Algorithm: LINEARSEARCH
Input: An arrayA[1..n] of n elements and an element x.
Output:j if x = A[j],0 ≤ j ≤ n-1, and -1 otherwise.

1. j  0
2. while (j < n-1) and (x A[j])
3. j  j + 1
4. end while
5. if x = A[j] then return j else return -1

# of Comparisons: between 1 and n
Remarks
 Scanning all entries of A is inevitable if no more information about the ordering of

the elements inA is given.
 If we are given that the elements in A are sorted, say in non-decreasing order,

then one can find much more efficient algorithms.

1.4 Binary Search Problem:

18AL Anbar university- college of Computer
Information Systems Department

Consider the problem of determining whether a given element x is in a
sorted A. This problem can be rephrased as follows: Find an index j; 0 ≤ j ≤ n-1,
such that x = A[j] if x is in A, and j = -1 otherwise, where A[j]
<= A [j+1] <=..... <= A [n-1].

Example 1.1 Consider searching the array

In this instance, we want to search for element x = 22. First, we compare
x with the middle element A [(0 + 13)/2] = A[6] = 10. Since 22 > A[6], and
since it is known that A[i] <= A[i + 1], 0 <= i < 13, x cannot be in A[0..6], and
therefore this portion of the array can be discarded. So, we are left with the
subarray

Next, we compare x
with the middle of the remaining elements A [(7 + 13)/2] = A[10] = 23. Since
22 < A [10], and since A[i] <= A [i+1]. 11 <= i < 13, x cannot be in A [10...13], and
therefore this portion of the array can also be discarded. Thus, the remaining
portion of the array to be searched is now reduced to

Repeating this procedure, we discard A[7..8], which leaves only one entry
in the array to be searched, that is A[9] = 22. Finally, we find that x = A[9], and
the search is successfully completed.

In general, let A[low..high] be a nonempty array of elements sorted in
nondecreasing order. Let A[mid] be the middle element, and suppose that x >
A[mid]. We observe that if x is in A, then it must be one of the elements
A[mid + 1], A[mid + 2], … , A[high]. It follows that we only need to search for x in
A[mid + 1..high].

In other words, the entries in A[low..mid] are discarded in subsequent
comparisons since, by assumption, A is sorted in non-decreasing order, which
implies that x cannot be in this half of the array. S imilarly, if x < A[mid], then we
only need to search for x in A[low..mid - 1].

7 8 9 10 11 12 13
A[7..13] = 12 15 22 23 27 32 35

7 8 9
A[7..9] = 12 15 22

0 1 2 3 4 5 6 7 8 9 10 11 12 13
A[0..13] = 1 4 5 7 8 9 10 12 15 22 23 27 32 35

19AL Anbar university- college of Computer
Information Systems Department

This results in an efficient strategy which, because of its repetitive
halving, is referred to as binary search. Algorithm BINARYSEARCH gives a more
formal description of this method:

Algorithm: BINARYSEARCH
Input: An arrayA[0..n-1] of n elements sorted

in Non-decreasing order and an element x.
Output: j if x = A[j], 0 ≤ j ≤ n-1,

and -1 otherwise.
1. low  0; high  n-1; j  -1
2. while (low ≤ high) and (j = -1)
3. mid  [(low + high)/2]
4. if x = A[mid] then j mid
5. else if x < A[mid] then high mid - 1
6. else low mid + 1
7. end while
8. Return j

Example: Searching for x = 35 or any value greater than 35. The array is
sorted in non-decreasing order.

A[0..13] =

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 4 5 7 8 9 10 12 15 22 23 27 32 35

7 8 9 10 11 12 13
12 15 22 23 27 32 35

11 12 13
27 32 35

13
35

20AL Anbar university- college of Computer
Information Systems Department

1.5 Selection Sort

Algorithm: SELECTIONSORT
Input: An arrayA[1..n] of n elements.
Output: A[1..n] sorted in non-decreasing order.

1. for i  0 to n - 2
2. k  i

//Find the ith smallest element.}
3. for j  i + 1 to n-1
4. if A[j] < A[k] then k  j
5. end for
6. if k  i then interchange A[i] and A[k]
7. end for

During pass i the smallest value between index i and the last entry in the
array is interchanged with the entry at index i.

 Example:

First Pass

21AL Anbar university- college of Computer
Information Systems Department

Second Pass

Third Pass

Fourth Pass

1.6 Insertion Sort

22AL Anbar university- college of Computer
Information Systems Department

Algorithm: INSERTIONSORT
Input: An arrayA[0..n-1] of n elements.
Output: A[0..n-1] sorted in non-decreasing order.

1. for i  1 to n-2
2. xA[i]
3. j  i - 1
4. while (j >-1) and (A[j] > x)
5. A[j + 1] A[j]
6. j  j - 1
7. end while
8. A[j + 1]  x
9. end for

 Example:

First Pass

Second Pass

23AL Anbar university- college of Computer
Information Systems Department

Third Pass

Fourth Pass

24AL Anbar university- college of Computer
Information Systems Department

Fifth Pass
 Then A[i] is inserted in its proper position.

