
- التحليل الرسمي او البياني (Graphical Analysis)

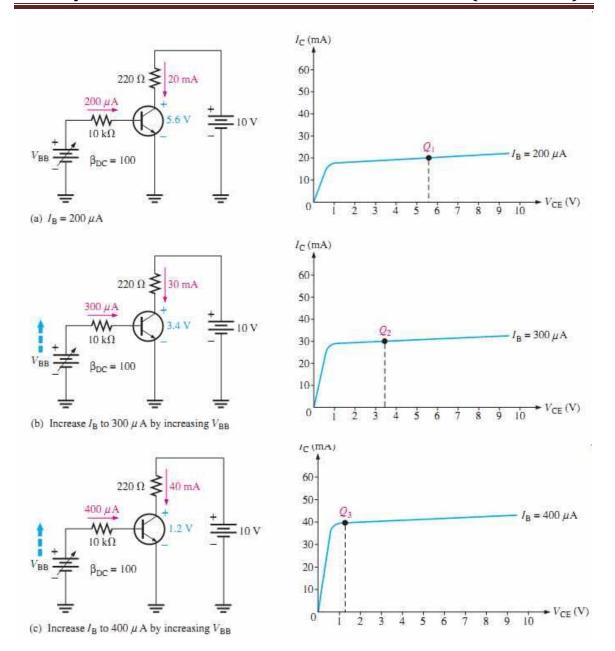
الترانزستور في الشكل (32a) منحاز بفولتيتين V_{BB} و V_{CC} كي نحقق متطلب عمل الترانزستور ونحصل على I_E , I_C , I_B وفي الشكل (32b) يبين منحنى خصائص الخرج سنستخدمة لتوضيح تاثير فولتية الانحياز .

الشكل (32)

ولتوضيح حصولنا على الشكل (32b) نذكر الخطوات التي نتجت ذلك الشكل.

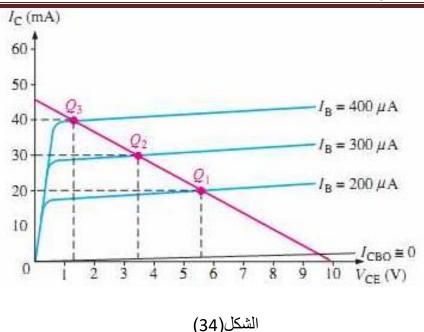
الخطوه الاولى هو تغير في الفولتية V_{BB} الى ان نحصل على قيمة I_B تساوي $I_C=1$ ومعلوم الخطوة الثانية $I_C=1$ ومن ثم ننتقل للخطوة الثانية ان $I_C=1$ ومن ثم ننتقل للخطوة الثانية

$$V_{CE} = V_{CC} - I_C R_C = 10 - (20 \text{mA})(220 \Omega) = 5.6 \text{ V}$$

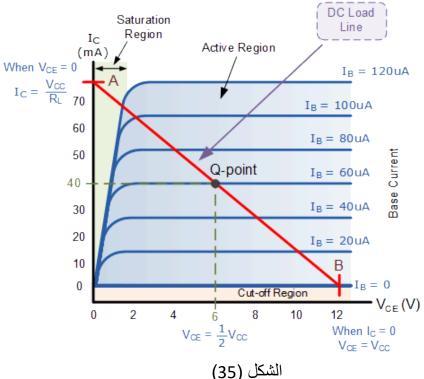

 Q_1 وبذلك نحصل على نقطة التشغيل الأولى

 Q_2 على على الخطوات السابقة يمكن ان نحصل على وبنفس

(
$$V_{CE}=3.4 \text{ V}$$
 , $I_{C}=30 \text{mA}$, $I_{B}=300 \,\mu\text{A}$)

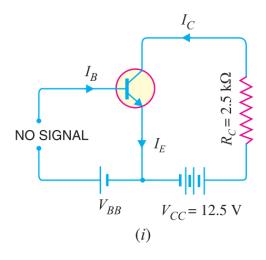

($V_{CE}=1.2~{
m V}$, $I_{C}=40{
m mA}$, $I_{B}=400~\mu{
m A}$) Q_{3} وكذلك نحصل على

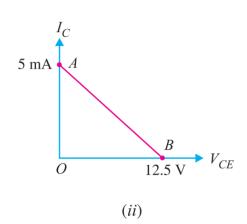
وهذا موضح في الشكل (33a) ، (33b) ، وعلى التوالي .



 V_{CE} الشكل (33) الشكل ثلاث قيم I_B ورصد ماذا يحدث لقيم الشكل (33) الشكل

فاذا تم جمع نقاط الشغل الثلاثة برسمة واحدة والتوصيل بينهما بخط مستقيم فسنحصل على خط الحمل وكما موضح في الشكل (34) . ولكن هذه الطريقة لايجاد خط الحمل مطولة . لذلك لابد من ايجاد طريقة اسهل واسرع ، لذلك سنفكر بطريقة اخرى .




حيث يمكن ان نقول ان خط الحمل (DC Load Line) هو الخط المستقيم المرسوم على منحنى خصائص الترانزستور والواصل بين نقطة الاشباع (Saturation Point) عندما يكون $I_C = I_{C(sat)}$) على محور الصادات ونقطة القطع (Cut-off Point) عندما يكون $(V_{CE} = V_{CC})$ على محور السينات . كما موضح في الشكل (35) .

مثال (6)

في الدائرة المبينة ادناه ، اذا كان $V_{CC}=12.5 {\rm V}$, $R_C=2.5 {\rm k}\Omega$ ارسم خط الحمل وحدد نقطة التشغيل (Q-point) اذا علمت ان تيار القاعدة للاشارة الصفرية (Q-point) اذا $\beta=50$, $20 \mu {\rm A}$

الحل:

$$V_{CE} = V_{CC} - I_C R_C$$

 $V_{CE}=12.5~{
m V}$ اي ان $V_{CE}=V_{CC}$ عندما $I_{C}=0$

$$I_C = rac{V_{CC}}{R_C}$$
 وعندما $V_{CE} = 0~
m{V}$ لذلك

$$I_C = \frac{12.5}{2.5} = 5$$
mA اي ان

بتثبيت تلك النقطتين (A, B) على المحور السيني والمحور الصادي والايصال بينهما نحصل على خط الحمل .

 $\beta=50$ وكذلك $I_B=20\mu\mathrm{A}$ (Zero signal base current) تيار القاعدة للأشارة الصفرية لذلك نستطيع ان نجد النقطة المهمة على خط الحمل .

$$I_C = \beta I_B = 50 \times 0.02 = 1 \text{mA}$$

ومن العلاقة

$$V_{CE} = V_{CC} - I_C R_C$$

 V_{CE} نجد قيمة

$$V_{CE} = 12.5 - (1 \times 2.5) = 10$$
V

$$(1$$
mA , 10 V) هي $(I_C$, $V_{CE})$ (Q-point) اي ان نقطة التشغيل