
University of Anbar IT Department

College of CS & IT Human Computer Interaction (HCI)

 Prepared by Sumaya Abdulla Hamad

Human Computer Interaction (HCI)

Stage ndLectures for 2

(IT Department)

Lec. 6: Usability of programming languages

University of Anbar IT Department

College of CS & IT Human Computer Interaction (HCI)

 Prepared by Sumaya Abdulla Hamad

Lecture 6: Usability of programming languages

For many years, it seemed that conventional text programming would eventually be

replaced by visual programming languages, where program behavior is defined by

drawing diagrams (many proposals resembled software engineering diagrams, such as

those in UML – flow charts, object interaction, state charts etc). At a time when

software development methods involved creating a complete specification in diagram

form, then employing programmers to convert those into code, it seemed as though

programming could be completely automated. However the fallacy of this reasoning

was the same error made when FORTRAN (Formula Translation) was considered to

be ‘automatic programming’ – any representation that defines the program behavior in

sufficiently precise detail to be compiled will be more like programming than like

design. Drawing highly detailed diagrams is often more laborious than writing highly

detailed text, so it isn’t the case that diagrams will always have superior usability

relative to text.

Many elements of the modern WIMP interface originated in programming language

research. There are also some good examples of programming languages that have

been designed for use by special groups – end user programmers who are not

professionally trained in programming, or educational programming languages that

illustrate programming language principles using graphical display elements. It should

be clear that different languages are good for different purposes, and for use by

different people. These often include a broad mix of visual and textual (or even

physical and tangible) elements, selected to meet specific needs.

Cognitive Dimensions of Notations

The usability principles by which we describe what kind of activities a language in

being used for, and what kinds of visual representation can be useful or not useful for

those activities, have been collected into guidance for language designers, under the

name Cognitive Dimensions of Notations (CDs). Just as many innovations in

programming language user interfaces have led to radically different approaches to

University of Anbar IT Department

College of CS & IT Human Computer Interaction (HCI)

 Prepared by Sumaya Abdulla Hamad

user interfaces, CDs are one of the most appropriate theoretical frameworks for

analysis of completely new content manipulation styles.

The CDs are presented as a vocabulary for design discussion. Many of the dimensions

reflect common usability factors that experienced designers might have noticed, but

did not have a name for. Giving them a name allows designers to discuss these factors

easily. Furthermore, CDs are based on the observation that there is no perfect user

interface any more than a perfect programming language. Any user interface design

reflects a set of design trade-offs that the designers have had to make. Giving

designers a discussion vocabulary means that they can discuss the trade-offs that result

from their design decisions. The nature of the trade-offs is reflected in the structure of

the dimensions. It is not possible to create a design that has perfect characteristics in

every dimension – making improvements along one dimension often results in

degradation along another.

An example dimension is called viscosity, meaning resistance to change. In some

notations, small conceptual changes can be very expensive to make. Imagine changing

a variable from int to long in a large Java program. The programmer has to find every

function to which that variable is passed, check the parameter declarations, check any

temporary local variables where it is stored, check any calculations using the value,

and so on. The idea of what the programmer needs to do is simple, but achieving it is

hard. This is viscosity. There are programming languages that do not suffer from this

problem, but they have other problems instead – trade-offs. This means that language

designers must be able to recognize and discuss such problems when planning a new

language. The word “viscosity” helps that discussion to happen.

CDs are relevant to a wide range of content manipulation systems – audio and video

editors, social networking tools, calendar and project management systems, and many

others. These systems all provide a notation of some kind, and an environment for

viewing and manipulating the notation. Usability is a function of both the notation and

the environment.

University of Anbar IT Department

College of CS & IT Human Computer Interaction (HCI)

 Prepared by Sumaya Abdulla Hamad

Representative cognitive dimensions

The following list gives brief definitions of the main dimensions, and examples of the

questions that can be considered in order to determine the effects that these dimensions

will have on different user activities.

Premature commitment: constraints on the order of doing things.

When you are working with the notation, can you go about the job in any order you

like, or does the system force you to think ahead and make certain decisions first? If

so, what decisions do you need to make in advance? What sort of problems can this

cause in your work?

Hidden dependencies: important links between entities are not visible.

If the structure of the product means some parts are closely related to other parts, and

changes to one may affect the other, are those dependencies visible? What kind of

dependencies is hidden? In what ways can it get worse when you are creating a

particularly large description? Do these dependencies stay the same, or are there some

actions that cause them to get frozen? If so, what are they?

Secondary notation: extra information in means other than formal syntax. Is it

possible to make notes to yourself, or express information that is not really recognised

as part of the notation? If it was printed on a piece of paper that you could annotate or

scribble on, what would you write or draw? Do you ever add extra marks (or colors or

format choices) to clarify emphasis or repeat what is there already? If so, this may

constitute a helper device with its own notation.

Viscosity: resistance to change. When you need to make changes to previous work,

how easy is it to make the change? Why? Are there particular changes that are

especially difficult to make? Which ones?

Visibility: ability to view components easily. How easy is it to see or find the various

parts of the notation while it is being created or changed? Why? What kind of things is

difficult to see or find? If you need to compare or combine different parts, can you see

them at the same time? If not, why not?

University of Anbar IT Department

College of CS & IT Human Computer Interaction (HCI)

 Prepared by Sumaya Abdulla Hamad

Closeness of mapping: closeness of representation to domain. How closely related is

the notation to the result that you are describing? Why? (Note that if this is a sub-

device, the result may be part of another notation, not the end product). Which parts

seem to be a particularly strange way of doing or describing something?

Consistency: similar semantics are expressed in similar syntactic forms. Where there

are different parts of the notation that mean similar things, are the similarity clear from

the way they appear? Are there places where some things ought to be similar, but the

notation makes them different? What are they?

Diffuseness: verbosity of language. Does the notation

a) let you say what you want reasonably briefly, or b) is it long-winded? Why? What

sorts of things take more space to describe?

Error-proneness: the notation invites mistakes. Do some kinds of mistake seem

particularly common or easy to make? Which ones? Do you often find yourself

making small slips that irritate you or make you feel stupid? What are some examples?

Hard mental operations: high demand on cognitive resources. What kind of things

requires the most mental effort with this notation? Do some things seem especially

complex or difficult to work out in your head (e.g. when combining several things)?

What are they?

Progressive evaluation: work-to-date can be checked at any time. How easy is it to

stop in the middle of creating some notation, and check your work so far? Can you do

this any time you like? If not, why not? Can you find out how much progress you

have made, or check what stage in your work you are up to? If not, why not? Can you

try out partially-completed versions of the product? If not, why not?

Provisionality: degree of commitment to actions or marks. Is it possible to sketch

things out when you are playing around with ideas, or when you aren't sure which way

to proceed? What features of the notation help you to do this? What sort of things can

you do when you don't want to be too precise about the exact result you are trying

to get?

University of Anbar IT Department

College of CS & IT Human Computer Interaction (HCI)

 Prepared by Sumaya Abdulla Hamad

Role-expressiveness: the purpose of a component is readily inferred. When reading the

notation, is it easy to tell what each part is for? Why? Are there some parts that are

particularly difficult to interpret? Which ones? Are there parts that you really don't

know what they mean, but you put them in just because it's always been that way?

What are they?

Abstraction: types and availability of abstraction mechanisms. Does the system give

you any way of defining new facilities or terms within the notation, so that you can

extend it to describe new things or to express your ideas more clearly or succinctly?

What are they? Does the system insist that you start by defining new terms before

you can do anything else? What sort of things? These facilities are provided by an

abstraction manager - a redefinition device. It will have its own notation and set of

dimensions.

Notational activities

When users interact with content, there are a limited number of activities that they can

engage in, when considered with respect to the way the structure of the content might

change. A CDs evaluation must consider which classes of activity will be the primary

type of interaction for all representative system users. If the needs of different users

have different relative priorities, those activities can be emphasised when design trade-

offs are selected. The basic list of activities includes:

Search

Finding information by navigating through the content structure, using the facilities

provided by the environment (e.g. finding a specific value in a spreadsheet). The

notation is not changing at all, though the parts of it that the users sees will vary.

Visibility and hidden dependencies can be important factors in search.

Incrementation

Adding further content without altering the structure in any way (e.g. adding a new

formula to a spreadsheet). If the structure will not change, then viscosity is not going

to be very important.

University of Anbar IT Department

College of CS & IT Human Computer Interaction (HCI)

 Prepared by Sumaya Abdulla Hamad

Modification

Changing an existing structure, possibly without adding new content (e.g. changing a

spreadsheet for use with a different problem).

Transcription

Copying content from one structure or notation to another notation (e.g. reading an

equation out of a textbook, and converting it into a spreadsheet formula).

Exploratory design

Combining incrementation and modification, with the further characteristic that the

desired end state is not known in advance. Viscosity can make this kind of activity far

more difficult. This is why good languages for hacking may not be strictly typed, or

make greater use of type inference, as maintaining type declarations causes greater

viscosity. Loosely typed languages are more likely to suffer from hidden dependencies

(a trade-off with viscosity), but this is not such a problem for exploratory design,

where the programmer can often hold this information in his head during the relatively

short development timescale.

References

- http://hcibib.org/

- Alan Blackwell, Human Computer Interaction – Lecture Notes, Cambridge

Computer Science Tripos, Part II

http://hcibib.org/

