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Lecture Two

Heat Exchanger Analysis

1- Introduction.

For designing or predicting the performance of a heat exchanger it is necessary that the total heat
transfer may be related with its governing parameters : (i) U (overall heat transfer coefficient) due to
various modes of heat transfer, (if) A total surface area of the heat transfer, and (iii) £,, £, (the inlet and

outlet fluid temperatures). Fig. 1 shows the overall energy balance in a heat exchanger.

Let, m = Mass flow rate, kg/s,
c, = Specific heat of fluid at constant pressure, J/kg°C,
t = Temperature of fluid, °C, and
At = Temperature drop or rise of a fluid across the heat exchanger.
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Fig. 1 Overall energy balance in a heat exchanger.

Subscripts A and c refer to the hot and cold fluids respectively; subscripts 1 and 2 correspond to
the inlet and outlet conditions respectively.

Assuming that there is no heat loss to the surroundings and potential and kinetic energy changes
are negligible, from the energy balance in a heat exchanger, we have :

Heat given up by the hot fluid, Q =m, Con (2, — 1)

Heat picked up by the cold fluid, Q0 = m. C, (3‘62 - tcl)

Total heat transfer rate in the heat exchanger, Q0 = UA Bm

where, U = Overall heat transfer coefficient between the two fluids,

A = Effective heat transfer area, and

0,, = Appropriate mean value of temperature difference or logarithmic mean
temperature difference (LMTD).
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2- Logarithmic Mean Temperature Difference (LMTD)

Logarithmic mean temperature difference (LMTD) is defined as that temperature difference
which, if constant, would give the same rate of heat transfer as actually occurs under variable
conditions of temperature difference.

In order to derive expression for LMTD for various types of heat exchangers, the following
assumptions are made :

1. The overall heat transfer coefficient U is constant.

2. The flow conditions are steady.

3. The specific heats and mass flow rates of both fluids are constant.
4

There is no loss of heat to the surroundings, due to the heat exchanger being perfectly
insulated.

There is no change of phase either of the fluid during the heat transfer.
6. The changes in potential and kinetic energies are negligible.
Axial conduction along the tubes of the heat exchanger is negligible.

A- Logarithmic Mean Temperature Difference for ((Parallel Flow))

Refer to Fig.2, which shows the flow arrangement and distribution of temperature in a single-

pass parallel flow heat exchanger.

Let us consider an elementary area dA of the heat exchanger. The rate of flow of heat through this
elementary area is given by

dQ = UdA(t,-1)=U.dA . At

As aresult of heat transfer dQ through the area dA, the hot fluid is cooled by df, whereas the cold
fluid is heated up by dr . The energy balance over a differential area dA may be written as

dQ = — tit,. Cppy. dty =1t . Cpp. dt,=U . dA . (t,—1,)

(Here d,,, is — ve and 4, is + ve)

d d
or, dty, = — — e _ L
My Cpp C,
d d
and, dt.= — ¢ _d0
m.c,. C,

where, C,= m, Cop = Heat capacity or water equivalent of hot fluid, and

C.=m, ¢,, = Heat capacity or water equivalent of cold fluid.



Subject: Heat Transfer-11
Dr. Mustafa B. Al-hadithi

m,, and m_ are the mass flow rates of fluids and ¢,y and ¢, are the respective specific heats.

1 1]

. dt, — dt. = — d — 4+ —
S h c Q_Ch C{_
d8=-dQ L+L

_Ch Cc_

Substituting the value of dQ from the above equation becomes
1 1
de=—U.dA(fh—Ic) _+—
ch Cc
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(b) Temperature distribution

Subscripts h, c refer to : hot and cold fluids
Subscript 1, 2 refer to : inlet and oulet conditions.

Fig.2 Calculation of LMTD for a parallel flow heat exchanger.
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or, do=-U.dA.B L+L
Ch Cc
N Wy o[l L
’ G Ch Cc
Integrating between inlet and outlet conditions (i.e. from A =0 to A = A), we get
[ a__ L1 [ v . aa
1 9 Ch CC‘ A=0
1 1
or, In(6,/0,)=-UA|— +—
h Cf

Now, the total heat transfer rate between the two fluids is given by
Q=0C,,~tp)=C. ;-1

I = Iha

1
or, - 1 I
C, o Substituting the values of < and —
1
C.

h fa

ley = 1 In above equation

Q

by, — 1 lo—1I,
fn{92f81}=-U,q|i“Qﬁ2+ zQ 1]

UA UA
= T [ty = 1) — (= 1)1 = —— (8, — 8)
Q h2 2 hl 1 Q 2 1

_UA(8,-6))

==, (6,/6,)

The above equation may be written as
Q=UAB,
_ 6-6, _ 6,-6
" I (0,/0,)) In(0,/6,)
6, is called the logarithmic mean temperature difference (LMTD).

where,
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B- Logarithmic Mean Temperature Difference for ((Counter - Flow))

Refer to Fig.3, which shows the flow arrangement and temperature distribution in a single-
pass counter-tlow heat exchanger.
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Fig.3 Calculation of LMTD for a counter-flow heat exchanger.

Let us consider an elementary area dA of the heat exchanger. The rate of flow of heat through this
elementary area is given by
dQ =U.dA(t,—1)=U.dA . At
In this case also, due to heat transfer d0Q through the area dA, the hot fluid is cooled down by
dt, whereas the cold fluid is heated by dr . The energy balance over a differential area dA may be
written as

dQZ—m,,.cph.dth—mc.Cpf.dfc
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In a counter-flow system, the temperatures of both the fluids decrease in the direction of heat
exchanger length, hence the — ve signs.

dfh:_£:_£

My € py G

and, d;c=_£=_£
m.c. C.

c - pe C

dty—di,=—dg |- L

' ‘ C.‘r Cc‘

1 1

or, do=-d0|— - —
CP: Cr:‘

Inserting the value of dQ from above equation

do=-U dA(rh—.tc}[L—l}

c, C.
=-m.e[i-i]
C."r Cr:
. O gyl L
: 0 c, C.

Integrating the above equation from A = 0 to A = A, we get

1 1
6,0 )=-U.A|—-—
H(Z I) |:CF! Ccl

Now, the total heat transfer rate between the two fluids is given by

Q = C.Fr (I.‘rl - I.’:Z} = CC (Ici - I{'l)

I fy—tp
or, —_——
Ch Q
or, b ta—1y
C. Q
substituting the values of — and i
h C,
Ly =t to—t
In(8,/0)=-UA|L—h2 _ <2 cl}
10 ot la
UA UA UA
- _E[“’” =) =ty = 1)1 = - E(Bl -0)= E (8,-6))
_UA(®,-8)
o e= (6,/6,)

Since, Q@=UA86_
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— BE_BI — 81_82
" In(8,/8,) In (6,/6,)

B,, (LMTD) for a counter-flow unit is always greater than that for a parallel flow unit, hence
counter-flow heat exchanger can transfer more heat than parallel-flow one; in other words a counter-
flow heat exchanger needs a smaller heating surface for the same rate of heat transfer. For this
reason, the counter-flow arrangement is usually used.

When the temperature variations of the fluids are relatively small, then temperature variation
curves are approximately straight lines and adequately accurate results are obtained by taking the
arithmatic mean temperature difference (AMTD).

It lyy  Iatila _ Iy = te)) + (lyy = 1ey) 6,4+ 8,
2 2 2 2

However, practical considerations suggest that the logarithmic mean temperature difference (8, )

AMTD =

8
should be invariably used when 8—1 >1.7.
2

You can reads the Examples in Rajput (10.1 to 10.30) from page.605




