LIMIT OF FUNCTIONS AND CONTINUITY

Definition (Limit)-Let (X, d_1) and (Y, d_2) be two metric spaces, suppose that $S \subset X$, $f: S \to Y$, we say that f(x) **tends** to the limit *L* as *x* tends to *a* if $\forall \epsilon > 0, \exists \delta > 0$ such that

$$d_2(f(x),L) < \epsilon \ if \ d_1(x,a) < \delta$$

and we write : $\lim_{x \to a} f(x) = L$

Example: Let $f: \mathbb{R} \to \mathbb{R}$, defined as f(x) = 3x - 1, prove that $\lim_{x\to 2} f(x) = 5$

Solution: L=5, a=2 $d_1(x, y) = d_2(x, y) = |x - y|$

 $\forall \epsilon > 0$, to find $\delta > 0$, such that $d_2(f(x),5) < \epsilon$ whenever $d_1(x,2) < \delta$, if $d_1(x,2) = |x-2| < \delta$

$$d_2(f(x),5) = |f(x) - 5| = |3x - 1 - 5| = |3x - 6| = 3|x - 2| < 3\delta$$

Choose $\delta = \frac{\epsilon}{3}$, to get : $\lim_{x \to 2} f(x) = 5$

Theorem (1)(without proof): *If f has a limit L then it is unique*.

Example: Let $f : \mathbb{R} \to \mathbb{R}$, Such that:

1-
$$f(x) = x^2$$
, prove that $\lim_{x \to a} f(x) = a^2$
2- $f(x) = \sqrt{x}$, prove that $\lim_{x \to a} f(x) = \sqrt{a}$
3- $f(x) = \frac{1}{1+x}$, prove that $\lim_{x \to 1} f(x) = \frac{1}{2}$
4- $f(x) = \sin x$, prove that $\lim_{x \to a} f(x) = \sin a$

Properties of limit of functions

Let $S \subset \mathbb{R}^n$, $f: S \to \mathbb{R}^m$, and $g: S \to \mathbb{R}^m$, and $\lim_{x \to a} f(x) = A$ and $\lim_{x \to a} g(x) = B$, then:

1-
$$\lim_{x \to a} (f + g)(x) = A + B$$

2- $\lim_{x \to a} (fg)(x) = AB$
3- $\lim_{x \to a} \left(\frac{f}{a}\right)(x) = \frac{A}{B}, \quad g(x) \neq 0 \quad and \quad B \neq 0$

Definition (Continuity)-Let (X, d_1) and (Y, d_2) be two metric spaces, suppose that $S \subset X, p \in X$ and $f: S \longrightarrow Y$, we say that f(x) is **continuous** at x = p, if $\forall \epsilon > 0, \exists \delta > 0$ such that

$$d_2(f(x), f(p)) < \epsilon$$
 whenever $d_1(x, p) < \delta$

Remark: If f(x) is **continuous** at x, if $\forall x \in S$, then f(x) is **continuous** on *S*

Notation: By definition , if f(x) is **continuous** at *p*, then:

$$\begin{aligned} 1 & \forall x \in S \ d_1(x,p) < \delta \to x \in B(p,\delta) \to f(x) \in f\big(B(p,\delta)\big) \\ 2 & \forall \epsilon > 0 \ d_2\big(f(x),f(p)\big) < \epsilon \to f(x) \in B(f(p),\epsilon) \to f(B(p,\delta) \subseteq f(B(f(p),\epsilon)) \end{aligned}$$

Example: Prove that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, is continuous $\forall x$, with $d_1(x,y) = d_2(x,y) = |x-y|$

Solution : Let $p \in \mathbb{R}$ to prove that f is continuous at x = p, let $\epsilon > 0$, *to find* $\delta > 0$ such that $|f(x) - f(p)| < \epsilon$ if $|x - p| < \delta$.

$$|f(x) - f(p)| = |x^2 - p^2| = |(x - p)(x + p)| = |(x - p)||(x + p)|$$

< |(x - p)|(|x| + |p|) ... (1)

Since $||x| - |p|| \le |x - p| < \delta \Rightarrow ||x| - |p|| < \delta \Rightarrow -\delta < |x| - |p| < \delta \Rightarrow |x| < \delta + |p|$

Substitute in (1) to get:

$$|f(x) - f(p)| \le |x - p|(|x| + |p|) < |x - p|(|p| + |p| + \delta)$$

Choose $\delta = \min\left\{1, \frac{\epsilon}{2|p|+1}\right\}$

$$\Rightarrow |f(x) - f(p)| < \delta(2|p| + 1) = \frac{\epsilon}{2|p| + 1} \cdot 2|p| + 1 = \epsilon$$

Then f is continuous at $x = p, \forall p \in \mathbb{R}$,

 \Rightarrow *f* is continuous on \mathbb{R} .

H.W 1: If $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, prove that f is continuous at x = 3

H.W 2: If $f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ prove that f is continuous at x = 0

Theorem (2) Let (X, d_1) and (Y, d_2) be two metric spaces, and $f: X \to Y$, then f(x) is continuous at $p \in X$, iff $\lim_{n\to\infty} f(x_n) = f(p)$ for each sequence $\langle x_n \rangle$ in X and $x_n \to p$

Proof: \Rightarrow **if** f(x) is continuous at $p \in X$, and $\langle x_n \rangle$ is a sequence in X such that $x_n \rightarrow p$. To prove that $\lim_{n \rightarrow \infty} f(x_n) = f(p)$

(i.e.
$$\exists k \in \mathbb{N} \ni d_2(f(x_n), f(p)) < \epsilon, \forall n > k$$
)

Since f is continuous at p, then $\forall \epsilon > 0$, $\exists \delta > 0 \exists d_2(f(x), f(p)) < \epsilon$, if $d_1(x, p) < \delta$, $\forall x$.

Since $x_n \to p$, then $\exists k \in \mathbb{N} \ni d_1(x_n, p) < \epsilon$, $\forall n > k$, since f is continuous, then at this k we have $d_2(f(x_n), f(p)) < \epsilon, \forall n > k$

Then $\lim_{n\to\infty} f(x_n) = f(p)$

Conversely, \Leftarrow , suppose that $f(x_n) \rightarrow f(p)$ for each $x_n \rightarrow p$, to prove that f is continuous at p.

Suppose that *f* is not continuous at *p*, then:

 $\exists \epsilon > 0, \exists x \in X \text{ such that } d_2(f(x), f(p)) \ge \epsilon \text{ and } d_1(x, p) < \delta$

Choose $\delta_1 = 1 \Longrightarrow \exists x_1 \in X \exists d_2(f(x_1), f(p)) \ge \epsilon$ and $d_1(x_1, p) < \delta_1 = 1$

$$\delta_{2} = \frac{1}{2} \Longrightarrow \exists x_{2} \in X \ \exists \ d_{2}(f(x_{2}), f(p)) \ge \epsilon \text{ and } d_{1}(x_{2}, p) < \delta_{2} = \frac{1}{2}$$

$$\delta_{3} = \frac{1}{3} \Longrightarrow \exists x_{3} \in X \ \exists \ d_{2}(f(x_{3}), f(p)) \ge \epsilon \text{ and } d_{1}(x_{3}, p) < \delta_{3} = \frac{1}{3}$$

$$\vdots$$

$$\delta_{n} = \frac{1}{n} \Longrightarrow \exists x_{n} \in X \ \exists \ d_{2}(f(x_{n}), f(p)) \ge \epsilon \text{ and } d_{1}(x_{n}, p) < \delta_{n} = \frac{1}{n}$$

Since $\frac{1}{n} \to 0 \ as \ n \to \infty \implies d_{1}(x_{n}, p) < \frac{1}{n} \to 0$

$$\Longrightarrow \langle x_{n} \rangle \text{ converges to } p$$

But $d_2(f(x_n), f(p)) \ge \epsilon \implies \langle f(x_n) \rangle \not\Rightarrow f(p) \implies C!$

Then *f* is continuous at *p*.

Examples

1-
$$f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Use theorem (2) to prove that f is not continuous at p=0

Let
$$\langle x_n \rangle = \langle \frac{1}{n} \rangle \Longrightarrow \frac{1}{n} \to 0 \text{ as } n \to \infty$$

 $\forall n, \frac{1}{n} > 0 \implies f(x_n) = f(\frac{1}{n}) = 1 \neq f(0) = 0$

by theorem 2, f is not continuous at p = 0

2- Let $f:[a,b] \to \mathbb{R}, f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 2 & \text{if } x \in \mathbb{Q}' \end{cases}$

Use theorem 2 to prove that f is not continuous everywhere.

Let $p \in [a, b] \implies p$ is rational or irrational.

I) If $p \in \mathbb{Q}$,

Since (between any two reals there are infinitely many rationals and irrationals) and(for any real number *p* there is irrational or rational Cauchy sequence converges to *p*) then, there is an irrational sequence $\langle x_n \rangle \rightarrow p$,

Then, $\langle f(x_n) \rangle \rightarrow 2$ and $2 \neq f(p) = 1$

Then by theorem (2) *f* is not continuous at $p \quad \forall p \in \mathbb{Q}$

II) Similarly, if $p \in \mathbb{Q}'$, we can show that f is not cont. at $p \quad \forall p \in \mathbb{Q}'$

Theorem (3) Let (X, d_1) and (Y, d_2) be two metric spaces, and $f: X \to Y$, then f(x) is continuous on X, iff $f^{-1}(V)$ is open set in X for every open set V in Y.

Proof) \Rightarrow Suppose that f is cont. on X, let V be an open set in Y, to show that $f^{-1}(V)$ is open in X.

Let $x \in f^{-1}(V) \Longrightarrow f(x) \in V$

Since V is open set $\Rightarrow \exists \epsilon > 0 \ni B(f(x), \epsilon) \subset V$

Since *f* is cont. $\Rightarrow \exists \delta > 0 \ni f(B(x, \delta)) \subset B(f(x), \epsilon) \subset V$

$$\Rightarrow f^{-1}\left(f(B(x,\delta))\right) \subset f^{-1}(V) \Rightarrow B(x,\delta) \subset f^{-1}(V)$$

This is true for all x in $f^{-1}(V) \Rightarrow f^{-1}(V)$ is open.

 \Leftarrow : Suppose that $f^{-1}(V)$ is open set in Y for each open set V in Y, to prove that f is cont.

Let
$$\epsilon > 0$$
, $x \in X$

Let $B(f(x),\epsilon)$ open in $Y \Longrightarrow f^{-1}(B(f(x),\epsilon))$ open in X.

By definition of open set $\Rightarrow f^{-1}(B(f(x),\epsilon)), \exists \delta > 0$

$$\ni B(f(x),\delta) \subset f^{-1}(B(f(x),\epsilon))$$

$$\Rightarrow f(B(x,\delta) \subset B(f(x),\epsilon)$$

Then by remark, f is cont. at x and this is true for all $x \in X$.

Example

1) Let $f: X \to X$, $f(x) = x^2$, prove that f is cont. in \mathbb{R} Let V be open set in Y V = (a, b) there are three cases:

Case 1: if *a*, *b* > 0

 $f^{-1}(V) = (\sqrt{a}, \sqrt{b}) \cup (-\sqrt{b}, -\sqrt{a})$ which is union of two open intervals, then $f^{-1}(V)$ is open in X

Case 2: if a < 0 and b > 0

 $f^{-1}(V) = \left(-\sqrt{b}, \sqrt{b}\right)$ then $f^{-1}(V)$ is open in X

Case 3: if $a, b < 0 \Longrightarrow f^{-1}(V) = \Phi \Longrightarrow f^{-1}(V)$ is open in X.

According to above three cases , V is open in Y implies $f^{-1}(V)$ is open in X

Then , by theorem (3) f is cont. on X

2)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$$

3) $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 1$
4) $f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$, not cont. at $x = 0$

Theorem (5) Let X be a metric space and f,g be two real valued functions. If f,g are cont. then:

1- $f \mp g$ 2- $f \cdot g$ 3-r f, $r \in \mathbb{R}$ 4- $\frac{f}{g} g \neq 0$ are cont. functions.

Corollary Every polynomial of the form:

$$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

Where a_i are constants $i = 0, 1, 2, \dots, n$, $n \in \mathbb{N}$, is cont.

Proof: since $f(x) = x^n$ is cont. $\forall n$ and rf is cont. (by th.4)

 \Rightarrow the sum of cont. functions is cont. (by th.4)

Definition(Vector space)(*review*)

 $(V, +, \cdot)$ is a vector space over \mathbb{R} if:

1- $V \neq \Phi$ 2- (V, +) is comm. Group. 3- \cdot is scalar product: if $r, s \in \mathbb{R}$ $v, w \in V$ a- (r + s)v = rv + svb- r(v + w) = rv + rwc- (rs)v = r(sv)d- $1 \cdot v = v$

Theorem (5) Let X be a metric space , define the following set:

 $C(X) = \{f: f: X \to \mathbb{R}, f \text{ is continuous}\}$

Then C(X) is a vector space over \mathbb{R} .

Theorem (6) Let X, Y be two metric spaces, and $f: X \to Y$ is continuous function if X is compact then f(X) is compact.

Proof $f(X) = \{f(x): x \in X\}$

Suppose that $\{V_{\lambda} : \lambda \in \Lambda\}$ is open cover for $f(X) \Longrightarrow f(X) \subseteq \bigcup_{\lambda \in \Lambda} V_{\lambda}$

To find finite sub-cover for f(X).

Since V_{λ} is open set in Y and f is cont.

 $\Rightarrow f^{-1}(V_{\lambda})$ open in X (by th.3)

Since $f(X) \subseteq \bigcup_{\lambda \in \Lambda} V_{\lambda} X \subseteq f^{-1}(\bigcup_{\lambda \in \Lambda} V_{\lambda}) = \bigcup_{\lambda \in \Lambda} f^{-1}(V_{\lambda})$

 \Rightarrow { $f^{-1}(V_{\lambda}), \lambda \in \Lambda$ } is open cover for X

Since X is compact then there is a finite subcover , say, $\{f^{-1}(V_1), f^{-1}(V_2), \cdots, f^{-1}(V_n)\}$

$$\Rightarrow X \subseteq \bigcup_{i=1}^{n} f^{-1}(V_i) = f^{-1}(\bigcup_{i=1}^{n} V_i)$$
$$\Rightarrow f(X) \subseteq (\bigcup_{i=1}^{n} V_i)$$

 \Rightarrow { V_1 , V_2 , \cdots , V_n } is finite subcover for $f(X) \rightarrow f(X)$ is compact.

Definition Let X be a metric space and $f: X \to \mathbb{R}$, we say that f is bounded if $\exists M > 0$, such that $|f(x)| \le M$, $\forall x \in X$

On the other hand $f(X) = \{f(x) : x \in X\}$ is bounded set if it has upper and lower (i.e. f is bounded $\Leftrightarrow f(X)$ bounded set)

Theorem (7): If f is a cont. mapping of a compact metric space X into \mathbb{R} then f(X) is closed and bounded. Thus, f is bounded.

Proof :Since f is cont and X is compact by theorem (6) then f(X) is compact then f(X) is closed and bounded Thus, f is bounded

Example: Give an example for bounded function its domain is not compact.

Consider the function X = (0,1) and $f: X \to \mathbb{R}$ defined as:

$$f(x) = 3x$$
 or $f(x) = x^2$

Note that |f((0,1))| is bounded with M = 3 but \mathbb{R} is not compact.

Example: $X = (0, \infty)$ not compact and $f(x) = \frac{1}{x}$ is continuous

But f is not bounded

(since
$$\forall M > 0, \exists k \in \mathbb{N} \ni M < \frac{1}{k} = f(k)$$
(by arch. prop.))

Definition (Maximum) Let X be a metric space and $f: X \to \mathbb{R}$, suppose that f is bounded a point a is called:

1- Maximum extreme point of *f* if $f(x) \le f(a)$, $\forall x \in X$

2- Minimum extreme point of *f* if $f(a) \le f(x)$, $\forall x \in X$

Example $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$, Find max and min extreme point

f is bounded function, since $-1 \le \sin(x) \le 1$, $\forall x$

then points: $a = \frac{\pi}{2} \mp 2n\pi$, $n \in \mathbb{Z}$ are all max extreme points for f

while $a = -\frac{\pi}{2} \mp 2n\pi$, $n \in \mathbb{Z}$ are all min extreme points for f

Example Give an example for a function f which has unique max and unique min.

Theorem (8) Let $f: X \to \mathbb{R}$ be continuous function. If X is compact then $\exists a, b \in X$ such that $f(a) \le f(x) \le f(b), \forall x \in X$

(i.e. f has max at b and min at a)

Proof: To prove that $\exists b \in X$ such that $f(x) \leq f(b), \forall x \in X$,

Since *f* is cont. function on a compact set X then f(X) is compact

 \Rightarrow f(X) is closed and bounded.

Since f(X) is bounded above by completeness axiom $\Rightarrow f(X)$ has supremum, say sup(f(X)) = M

To prove that M is acc. Point of f(X), to prove that $\forall \epsilon > 0$

 $(M - \epsilon, M + \epsilon) \setminus \{M\} \cap f(X) \neq \Phi \text{ if not} \Longrightarrow \exists \epsilon > 0$

Such that $(M - \epsilon, M + \epsilon) \setminus \{M\} \cap f(X) \neq \Phi \Longrightarrow M - \epsilon$ is upper bound of $f(X) \Longrightarrow C!$

Since $M - \epsilon < M = \sup(f(X)) \Longrightarrow M$ is acc.pt of f(X)

Since f(X) is closed $\rightarrow M \in f(X)$ $(S' \subset S \Leftrightarrow S \ closed)$

 $\Rightarrow \exists b \in X \ni f(b) = M \text{ and } f(x) \le M = f(b)$

 \Rightarrow *f* has a max extreme point.

By similar way prove that $\exists a \in X \ni f(a) \le f(x)$

Definition (Uniform continuity)

Let X be a metric space and $f: X \to \mathbb{R}$, suppose that f is called uniformly continuous if $\forall \epsilon > 0, \exists \delta > 0$, such that $|f(x) - f(y)| < \epsilon$ whenever $d(x, y) < \delta, \forall x, \forall y \in X$.

Remark the choose of δ in the definition of uniform continuity is depending on ϵ only.

Theorem (9) *Every uniformly continuous function is continuous but the converse is not true.*

Proof: Uniformly cont. \Rightarrow continuous?

Let *f* be a uniformly cont. function on X

 $\Rightarrow \forall \epsilon > 0, \exists \delta > 0 \ni |f(x) - f(y)| < \epsilon \text{ whenever } d(x, y) < \delta, \forall x, y$

Take y = p

 $\Rightarrow \forall \epsilon > 0 , \exists \delta > 0 \ni |f(x) - f(y)| < \epsilon$

whenever $d(x, p) < \delta$, $\forall x \in X \implies f$ is continuous at $p \forall p$.

Example: To show that cont. \Rightarrow uniformly cont.

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is cont. function

Let $x = n, y = n + \frac{1}{n}, n \in \mathbb{N}$

$$d(x, y) = |x - y| = \left|n - (n + \frac{1}{n})\right| = \frac{1}{n} < \delta$$

(by arch. For any real δ , $\exists n \in \mathbb{N} \ni \frac{1}{n} < \delta$)

Take $\epsilon = 1$

$$|f(x) - f(y)| = \left| n^2 - \left(n + \frac{1}{n} \right)^2 \right| = \left| n^2 - n^2 - 2 - \frac{1}{n^2} \right|$$

 $= 2 + \frac{1}{n^2} > \epsilon = 1 \Longrightarrow f$ is not uniformly cont.

Theorem(10) Let $f: X \to \mathbb{R}$, be a continuous function. If X iscompact then f is uniformly cont.(without proof)

Theorem(11)(Intermediate value property (IVP))

Let f be a continuous function on [a,b] and $f(a) = \alpha$, $f(b) = \beta$, then for all $\gamma, \alpha < \gamma < \beta \exists c$, a < c < b and $f(c) = \gamma$

Proof: Suppose that $S = \{x : x \in [a, b], f(x) \le \gamma\}$

 $S \neq \Phi$ since $a \in S$

S is bounded above since b is an upper bound of S

By completeness axiom,

S has a supremum, say, $c = \sup(S) \Longrightarrow a < c < b$

Then there are three cases: $f(c) < \gamma$ or $f(c) > \gamma$ or $f(c) = \gamma$

If $f(c) < \gamma$, since f is continuous at c and $f(c) < \gamma \implies \exists > 0 \ni f(x) < \gamma \forall x \in (c - \epsilon, c + \epsilon) \cap [a, b]$

For this x, if $c < x < b \Rightarrow x \in S$ and $c < x \Rightarrow C$! For $f(c) < \gamma$

By similar way $f(c) \ge \gamma \Longrightarrow f(c) = \gamma$

Then $\exists c, a < c < b \ni f(c) = \gamma$

Applications of IVP

Theorem (12) (Interval theorem)

If f is cont. in the interval I = [a, b] then f(I) is closed and bounded.

Proof: Since I is closed and bounded then I is compact

Since *f* is cont. on I then *f* has max and min extreme points

Then $\exists c, d \text{ such that } f(c) = m \text{ and } f(d) = M$

Such that $m \le f(x) \le M, \forall x \in I$

There are two cases c < d or d < c

If c < d apply IVP on f and [c, d]

 $\forall y, y \in (m, M), \exists x \in (c, d) \ni f(x) = y \implies f(I) = [m, M]$

Theorem (13) Fixed point theorem

Let $f: [0,1] \rightarrow [0,1]$ be cont. function. Then there is at least number $c \ni f(c) = c$. (*c* is called fixed point)

Proof Suppose that $g: [0,1] \to \mathbb{R} \ni g(x) = f(x) - x$

g is cont. in [0,1] since *f* is cont. and $i: X \to X$ is also cont. and the sum of tow cont. functions is cont.

If f(0) = 0 and f(1) = 1 this complete the proof.

If $f(0) \neq 0$ and $f(1) \neq 1$ then:

Since *f* is onto function ($f: [0,1] \rightarrow [0,1]$)

Then g(0) = f(0) > 0 and g(1) = f(1) - 1 < 0

 $\Rightarrow g(1) < 0 < g(0)$

Then by IVP we get: $\exists c, 0 < c < 1 \ni g(c) = 0$

 $\Rightarrow f(c) - c = 0 \Rightarrow f(c) = c$

Then *f* has a fixed point.