## **Pharmacokinetics**

### **ABSORPTION I**

- Dr. Younus.h.johan College of pharmacy University of anbar
- <u>Sources</u>
- Lippincott Illustrated Reviews: Pharmacology 7th Edition
- Katzung ; Basic & Clinical Pharmacology 14th Edition
- Bennett & Brown ; Clinical pharmacology 11th edition
- Essentials of Medical Pharmacology; Lafi 09

## **Pharmacokinetics**

Pharmacokinetic characteristics of drug molecules concern the processes of absorption, distribution, metabolism, and excretion.

## ABSORPTION DISTRIBUTION METABOLISM Excretion















The biodisposition of a drug involves its permeation across cellular membrane barriers.

### **ABSORPTION**

• Concerns the processes of entry of a drug into the systemic circulation from the site of its administration .

#### Dosage form (tablet, capsule)





Solution



#### Penetration through:

Unstirred layer \_ Microvilli \_ Epithelial cell \_

#### Influential factors:

- Extent and rate of the disintegration, disaggregation and solution of the dosage form
- 2. Reaction with gastrointestinal juices
- Interaction with food and concurrent medication
- 4. Gastric emptying
- 5. Intestinal motility
- Penetration barriers unstirred layer, microvilli, epithelial cell
- Metabolism in walls of stomach and intestine
- Blood flow through the gastrointestinal tract

Distribution via: Marin (Lymph vessel)\_\_\_\_\_

### 1. Diffusion of unionized drugs

2. Diffusion of drugs that are weak electrolytes

3. Active transport

4. Filtration

5. Facilitated diffusion

#### **Q1- Drug transport across membranes by :**



Three (of four) ways for drugs to cross lipid membranes.
Diffusion through lipid membrane is the most important.

# Three (of four) ways for drugs to cross lipid membranes.

- 1. Diffusion through lipids (lipid membrane ) is the most important.
- 2. Diffusion through aqueous channels is not important because the channels are only 0.4nm wide and most drugs are at least 1nm in diameter.
- 3. Carrier mechanisms for specific compounds like A.A and sugars.
- **4. Pinocytosis** which is important for large lipid soluble molecules like **some vitamins**

#### **1-Diffusion of unionized drugs**



- Many drugs are
  weak acids (proton donor)
- •weak bases (proton acceptor)
- =weak dissociation in solvent
- •(organic VS aqoues solvents )
- it can exist in either
- <u>non ionized</u>
- ionized



### **3. Active transport**



**3.** Active transport is an energy-dependent process that can move drugs against a concentration gradient, as in protein-mediated transport systems. Active transport occurs in only one direction and is saturable. sugars, amino acids, and nucleosides.

### Because both <u>ionised and unionised</u> solutes readily pass across the capillary wall,

the influence of pH on intramuscular and subcutaneous absorption of drugs is likely to be far less significant. a much more loosely knit structure than the epithelial lining of the gastrointestinal tract, allows the rapid passage of all molecules below a molecular weight of about 5000, whether **ionised or unionised**.

# is movement of a substance down a concentration gradient.

Facilitated diffusion is •carrier-mediated, •specific, and •saturable;

•it does not require energy.

- Many drugs are
  weak acids (proton donor)
- •weak bases (proton acceptor)
- =weak dissociation in solvent,
- •thus it can exist in either
- <u>non ionized</u>
- ionized forms



- Many drugs are <u>weak acids</u> (proton donor) or weak bases (proton acceptor) =weak dissociation in solvent, thus it can exist in either <u>non ionized</u> or ionized forms in an equilibrium , depending on;an equilibrium , depending on;
  - the pH of the environment (stomach is acidic & SI is ?
  - the pKa (the pH at which the molecule is 50% ionized and 50% non ionized )

•Only the unionized form of a drug can diffuse to any significant degree across biologic (Lipid ) membranes.

- Many drugs are <u>weak acids</u> (proton donor) <u>or</u> <u>weak bases</u> (proton acceptor) <u>=weak dissociation</u> <u>in solvent, thus it can exist in either non ionized</u> <u>or ionized forms in an equilibrium , depending</u>
- on
  - the pH of the environment (stomach is acidic & SI is ?
  - the pKa (the pH at which the molecule is 50% ionized and 50% non ionized )

•Only the unionized form of a drug can diffuse to any significant degree across biologic (Lipid ) membranes.



pН

# Physiologic pH is about 7.35 –Slightly alkaline



### pKa

- Is the pH at which the molecule or drug is completely balanced between the
- uncharged (lipid soluble) and the
- charged (water soluble) form.





### $\log [RH]/[R] = pKa-pH$







 A drug must be able to be absorbed by the body.

#### Drugs must have Delivery



#### A drug must be able to be delivered to site of action.

# Drugs must have Elimination



# Drugs must be eliminated at a reasonable rate.



 Most drug are weak acids or weak bases



### Weak vs. Strong

















# Stronger means more Complete Dissociation FOCUS NaCI → Na+ CI -







Water H<sub>2</sub>O (polar solvent)









#### Stronger means more complete dissociation

not how much it burns!

#### HCI → H+ CI-



#### H+ CI-

Hydrochloric Acid (very strong acid)















#### Stronger means more complete dissociation

not how much it burns!

NaOH → Na + OH-

## **To be continued**