Prepared by Ass.Prof.Dr. Hamad M. Hasan

Principle of Work and Energy

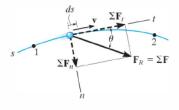


Fig. 14-7

Consider the particle in Fig. 14–7, which is located on the path defined relative to an inertial coordinate system. If the particle has a mass m and is subjected to a system of external forces represented by the resultant $\mathbf{F}_R = \Sigma \mathbf{F}$, then the equation of motion for the particle in the tangential direction is $\Sigma F_t = ma_t$. Applying the kinematic equation $a_t = v \, dv/ds$ and integrating both sides, assuming initially that the particle has a position $s = s_1$ and a speed $v = v_1$, and later at $s = s_2$, $v = v_2$, we have

$$\sum \int_{s_1}^{s_2} F_t \, ds = \int_{v_1}^{v_2} mv \, dv$$

$$\sum \int_{s_1}^{s_2} F_t \, ds = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$
(14-5)

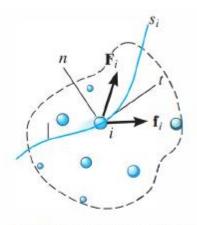
From Fig. 14–7, note that $\Sigma F_t = \Sigma F \cos \theta$, and since work is defined from Eq. 14–1, the final result can be written as

$$\Sigma U_{1-2} = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 \tag{14-6}$$

This equation represents the *principle of work and energy* for the particle. The term on the left is the sum of the work done by *all* the forces acting on the particle as the particle moves from point 1 to point 2. The two terms on the right side, which are of the form $T = \frac{1}{2}mv^2$, define the particle's final and initial *kinetic energy*, respectively. Like work, kinetic energy is a *scalar* and has units of joules (J) and ft·lb. However, unlike work, which can be either positive or negative, the kinetic energy is *always positive*, regardless of the direction of motion of the particle.

When Eq. 14-6 is applied, it is often expressed in the form

$$T_1 + \Sigma U_{1-2} = T_2 \tag{14-7}$$


which states that the particle's initial kinetic energy plus the work done by all the forces acting on the particle as it moves from its initial to its final position is equal to the particle's final kinetic energy.

As noted from the derivation, the principle of work and energy represents an integrated form of $\Sigma F_t = ma_t$, obtained by using the kinematic equation $a_t = v \, dv/ds$. As a result, this principle will provide a convenient substitution for $\Sigma F_t = ma_t$ when solving those types of kinetic problems which involve force, velocity, and displacement since these quantities are involved in Eq. 14–7. For application, it is suggested that the following procedure be used.

Principle of Work and Energy for a System of Particles

The principle of work and energy can be extended to include a system of particles isolated within an enclosed region of space as shown in Fig. 14–8. Here the arbitrary *i*th particle, having a mass m_i , is subjected to a resultant external force \mathbf{F}_i and a resultant internal force \mathbf{f}_i which all the other particles exert on the *i*th particle. If we apply the principle of work and energy to this and each of the other particles in the system, then since work and energy are scalar quantities, the equations can be summed algebraically, which gives

$$\Sigma T_1 + \Sigma U_{1-2} = \Sigma T_2 \tag{14-8}$$

Inertial coordinate system

Fig. 14-8

Work of Friction Caused by Sliding. A special class of problems will now be investigated which requires a careful application of Eq. 14–8. These problems involve cases where a body slides over the surface of another body in the presence of friction. Consider, for example, a block which is translating a distance s over a rough surface as shown in Fig. 14–9a. If the applied force \mathbf{P} just balances the *resultant* frictional force $\mu_k N$, Fig. 14–9b, then due to equilibrium a constant velocity \mathbf{v} is maintained, and one would expect Eq. 14–8 to be applied as follows:

$$\frac{1}{2}mv^2 + Ps - \mu_k Ns = \frac{1}{2}mv^2$$

Indeed this equation is satisfied if $P = \mu_k N$

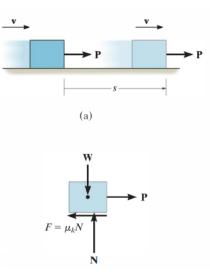


Fig. 14-9