${ }^{r t}$ Class

Basic of Electrical Engineering.

Basic RL and RC circuits

Basic RL and RC Circuits

The RL circuit with D.C (steady state)
The inductor is short time at $t=\infty$
Calculate the inductor current for circuits shown below.

R-L TRANSIENTS: STORAGE CYCLE

$$
\begin{gathered}
-E+R i+L \frac{d i}{d t}=0 \\
R i+L \frac{d i}{d t}=E \\
L \frac{d i}{d t}=E-R i \\
L d i \stackrel{(E-R i) d t}{=} \\
\frac{L d i}{(E-R i)}=d t \\
\int \frac{L d i}{(E-R i)}=\int d t \\
-\frac{L}{R} \ln (E-R i)=t+k
\end{gathered}
$$

at $t=0, i=0$, therefore

$$
-\frac{L}{R} \ln (E)=k
$$

And

$$
\begin{gathered}
\frac{L}{R} \ln (E-R i)=t-\frac{L}{R} \ln (E) \\
-\frac{L}{R} \ln (E-R i)+\frac{L}{R} \ln (E)=t \\
-\frac{L}{R}\left(\ln \left(\frac{E-R i}{E}\right)\right)=t \\
\frac{E-R i}{E}=e^{-\frac{R}{L} t} \\
i=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)=\frac{E}{R}\left(1-e^{-\frac{t}{\tau}}\right) \\
t=\frac{L}{R} \\
(\text { seconds, s) } \\
i_{L}=I_{m}\left(1-e^{-t / \tau}\right)=\frac{E}{R}\left(1-e^{-t /(L R)}\right) \\
\hline V_{L}=E e^{-t / \tau}
\end{gathered}
$$

Example:
Find the mathematical expression for the transient behaviour of i_{L} and v_{L}.

$\tau=\frac{L}{R}=\frac{4}{2 \times 10^{3}}=2 \mathrm{~ms}$
$i_{L}=\frac{E}{R}\left(1-e^{-\frac{t}{\tau}}\right)=\frac{50}{2 \times 10^{3}}\left(1-e^{-500 t}\right)=25\left(1-e^{-500 t}\right) m A$
$v_{L}=E e^{-\frac{t}{\tau}}=50 e^{-500 t} V$

Example:

For the circuit shown below, calculate the mathematical expression of $i_{L}, v_{L}, v_{R_{1}}, v_{R_{2}}$ before and after the storage phase has been complete ant the switch is open.

1-switch on

$\tau=\frac{L}{R_{e q}}=\frac{4}{2 \times 10^{3}}=2 \mathrm{~ms}$
$i_{L}=\frac{E}{R_{1}}\left(1-e^{-\frac{t}{\tau}}\right)=\frac{50}{2 \times 10^{3}}\left(1-e^{-500 t}\right)=25\left(1-e^{-500 t}\right) m A$
$v_{L}=E e^{-\frac{t}{\tau}}=50 e^{-500 t} V$
$v_{R_{1}}=i_{L} R_{1}=\frac{E}{R_{1}} R_{1}\left(1-e^{-\frac{t}{\tau}}\right)=50\left(1-e^{-500 t}\right) v$
$v_{R_{2}}=E=50 \mathrm{~V}$

2-switch off

After the storage phase has passed and steady-state conditions are established, the switch can be opened without the sparking effect or rapid discharge due to the resistor R_{2}, which provides a complete path for the current i_{L}. The voltage v across the inductor will reverse polarity and have a magnitude determined by
$\dot{\tau}=\frac{L}{R_{e q}}=\frac{4}{2 \times 10^{3}+3 \times 10^{3}}=0.8 \mathrm{~ms}$
$i_{L}=\frac{E}{R_{1}} e^{-\frac{t}{\tau}}=\frac{50}{2 \times 10^{3}} e^{-\frac{t}{\tau}}=25 e^{-\frac{t}{0.8 \times 10^{-3}}} \mathrm{~mA}$
$v_{L}=-i_{L}\left(R_{1}+R_{2}\right)=-\frac{E}{R_{1}}\left(R_{1}+R_{2}\right) e^{-\frac{t}{t}}=-E\left(1+\frac{R_{2}}{R_{1}}\right) e^{-\frac{t}{0.8 \times 10^{-3}}}=-50\left(1+\frac{3}{2}\right) e^{-\frac{t}{0.8 \times 10^{-3}}}=$
$-75 e^{-\frac{t}{0.8 \times 10^{-3}} V}$
$v_{R_{1}}=i_{L} R_{1}=\frac{E}{R_{1}} R_{1} e^{-\frac{t}{\tau}}=50 e^{-\frac{t}{0.8 \times 10^{-3}} t} v$
$v_{R_{2}}=-i_{L} R_{2}=-\frac{E}{R_{1}} R_{2} e^{-\frac{t}{\tau}}=-\frac{50}{2} 3 e^{-\frac{t}{0.8 \times 10^{-3}} t}=-75 e^{-\frac{t}{0.8 \times 10^{-3}} t} V$

${ }^{p t}$ Class

Basic of Electrical Engineering.
Basic RL and RC circuits.

The Source Free RL circuit

Using KVL, leads

$$
R i+L \frac{d i}{d t}=0
$$

This equation represents a differential equation and can be solved by several different methods

$$
\frac{d i}{i}=-\frac{R}{L} d t
$$

Since the current is I_{0} at $t=0$ and $i(t)$ at time t, we may equate the two definite integrals with are obtained by integrating each side between the corresponding limits

$$
\begin{gathered}
\int_{I_{0}}^{i(t)} \frac{d i}{i}=-\frac{R}{L} \int_{0}^{t} d t \\
i(t)=I_{0} e^{-\frac{R}{L} t} \\
v(t)=-v_{L} e^{-\frac{R}{L} t}
\end{gathered}
$$

Example:

If the inductor has a current 2 A at $\mathrm{t}=0$, find an expression for $i_{L}(t)$ valid for $t>0$, and its value at $\mathrm{t}=200 \mu \mathrm{~s}$.

$i(t)=I_{0} e^{-\frac{R}{L} t}=2 e^{-\frac{200}{50 \times 10^{-3} t}}=2 e^{-4000 t} \mathrm{~A}$
At $\mathrm{t}=200 \mu \mathrm{~s}$
$i(200 \mu \mathrm{~s})=2 e^{-4000 \times 200 \times 10^{-6}}=2 e^{-0.8}=898.7 \mathrm{~mA}$

THÉVENIN EQUIVALENT:

Example:

For the network of Figure below
a. Find the mathematical expression for the transient behavior of the current $i L$ and the voltage $v L$ after the closing of the switch ($I i=0 \mathrm{~mA}$).
b. Draw the resultant waveform for each.

${ }^{t t}$ Class

Basic of Electrical Engineering.
Basic RL and RC circuits

Solutions:

a. Applying Thévenin's theorem to the $80-\mathrm{mH}$ inductor, yields

$$
R_{t h}=\frac{(4+16) \times 20}{(4+16)+20}=10 \mathrm{~K} \Omega
$$

Applying the voltage divider rule to determine Thevinen voltage
$E_{t h}=12 \frac{(4+16)}{(4+16)+20}=6 \mathrm{~V}$
$\tau=\frac{L}{R_{t h}}=\frac{80 \times 10^{-3}}{10 \times 10^{3}}=8 \mu \mathrm{~s}$
$i_{L}=\frac{E_{t h}}{R_{t h}}\left(1-e^{-\frac{t}{\tau}}\right)=\frac{6}{10 \times 10^{3}}\left(1-e^{-\frac{t}{8 \times 10^{-6}}}\right)$

$i_{L}=0.6\left(1-e^{-\frac{t}{8 \times 10^{-6}}}\right) m A$
$v_{L}=E_{t h} e^{-\frac{t}{\tau}}=6 e^{-\frac{t}{8 \times 10^{-6}} V}$

Example:
Find the voltage across 40Ω resistor at $\mathrm{t}=200 \mathrm{~ms}$.

${ }^{p t}$ Class

Basic of Electrical Engineering.
Basic RL and RC circuits
$I_{l}=\frac{24}{10}=2.4 \mathrm{~A}$
$\tau=\frac{L}{R}=\frac{5}{10}=0.5 \mathrm{~s}$
At $\mathrm{t}=0$
$\tau=\frac{L}{R_{e q}}=\frac{5}{10+40}=0.1 \mathrm{~s}$
$i(t)=I_{0} e^{-\frac{R}{L} t}=2.4 e^{-10 t}$
$V_{40}=i(t) R=-2.4 \times 40 \times e^{-10 t}=-96 e^{-10 t} \mathrm{~V}$

Example:
Determine both i_{1} and i_{L} for $t>0$.

$L_{e q}=\frac{2 \times 3}{2+3}+1=2.2 \mathrm{mH}$
$R_{e q}=\frac{180 \times 90}{180+90}+50=110 \Omega$
$I_{L}=\frac{18}{50}=360 \mathrm{~mA}$
$I_{L}(t)=360 e^{-\frac{R_{e q}}{L_{e q}} t}=360 e^{-\frac{110}{2.2 \times 10^{-3}} t}=360 e^{-50000 t} \mathrm{~mA}$
$I_{1}(t)=-360 \frac{180}{180+90} e^{-50000 t}=-240 e^{-50000 t} m A$

H.W

The switch $S 1$ of following Figure has been closed for a long time. At $t=0 \mathrm{~s}, S 1$ is opened at the same instant $S 2$ is closed to avoid an interruption in current through the coil.
a. Find the initial current through the coil. Pay particular attention to its direction.
b. Find the mathematical expression for the current i_{L} following the closing of the switch $S 2$.
c. Sketch the waveform for i_{L}.

${ }^{p t}$ Class

Basic of Electrical Engineering.
Basic RL and RC circuits

RC Circuits

Find the voltage across and charge on capacitor C_{1} of Figure below after it has charged up to its final value.

Solution :

the capacitor is effectively an open circuit for dc after charging up to its final value

$$
\begin{gathered}
V_{C}=E \frac{R_{2}}{R_{1}+R_{2}}=24 \frac{8}{12}=16 \mathrm{~V} \\
Q_{1}=V_{C} C_{1}=16 \times 20 \times 10^{-6}=320 \mu \mathrm{C}
\end{gathered}
$$

Example:

Find the voltage across and charge on each capacitor of the network of Figure below after each has charged up to its final value.

Solution

$$
\begin{gathered}
V_{C_{1}}=E \frac{R_{1}}{R_{1}+R_{2}}=72 \frac{2}{9}=16 \mathrm{~V} \\
V_{C_{2}}=E \frac{R_{2}}{R_{1}+R_{2}}=72 \frac{7}{9}=56 \mathrm{~V} \\
Q_{1}=V_{C_{1}} C_{1}=16 \times 2 \times 10^{-6}=32 \mu \mathrm{C} \\
Q_{2}=V_{C_{2}} C_{2}=56 \times 3 \times 10^{-6}=168 \mu \mathrm{C}
\end{gathered}
$$

ENERGY STORED BY A CAPACITOR

The ideal capacitor does not dissipate any of the energy supplied to it. It stores the energy in the form of an electric field between the conducting surfaces.

$$
\begin{equation*}
W_{C}=\frac{1}{2} C V^{2} \tag{J}
\end{equation*}
$$

TRANSIENTS IN CAPACITIVE NETWORKS: CHARGING PHASE

Basic charging network.

i_{C} during the charging phase.

v_{C} during the charging phase.

p^{t} Class

Basic of Electrical Engineering.
Basic RL and RC circuits

$$
\begin{gathered}
-E+I_{R} R+V_{C}=0 \\
-E+R C \frac{d V_{C}}{d t}+V_{C}=0 \\
R C \frac{d V_{C}}{d t}=E-V_{C} \\
R C \frac{d V_{C}}{\left(E-V_{C}\right)}=d t \\
\int R C \frac{d V_{C}}{\left(E-V_{C}\right)}=\int d t \\
-R C \ln \left(E-V_{C}\right)=t+K
\end{gathered}
$$

At $\mathrm{t}=0, V_{C}=0$, therefore

$$
\begin{gathered}
-R C \ln (E)=K \\
-R C \ln \left(E-V_{C}\right)=t-R C \ln (E) \\
-R C \ln \left(E-V_{C}\right)+R C \ln (E)=t \\
-R C \ln \left(\frac{E-V_{C}}{E}\right)=t \\
\ln \left(\frac{E-V_{C}}{E}\right)=-\frac{t}{R C} \\
\frac{E-V_{C}}{E}=e^{-\frac{t}{R C}} \\
V_{C}=E-E e^{-\frac{t}{R C}}=E\left(1-e^{-\frac{t}{R C}}\right) \\
\tau=R C
\end{gathered}
$$

And

$$
I_{C}=I_{C}=I_{0} e^{-\frac{t}{R C}}=\frac{E}{R} e^{-\frac{t}{R C}}
$$

RLC Circuits

Example:
Find the current I_{L} and the voltage V_{C} for the network

Solution:

$$
I_{L}=\frac{E}{R_{1}+R_{2}}=\frac{10}{5}=2 \mathrm{~A}
$$

r^{t} Class

Basic of Electrical Engineering.
Basic RL and RC circuits

$$
V_{L}=E \frac{R_{2}}{R_{1}+R_{2}}=10 \frac{3}{5}=6 \mathrm{~V}
$$

H.W

Find the currents $I 1$ and $I 2$ and the voltages V_{1} and V_{2} for the network

