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 Differentiation Formulas 
In the first section of this chapter we saw the definition of the derivative and we computed a 
couple of derivatives using the definition.  As we saw in those examples there was a fair amount 
of work involved in computing the limits and the functions that we worked with were not terribly 
complicated. 
 
For more complex functions using the definition of the derivative would be an almost impossible 
task.  Luckily for us we won’t have to use the definition terribly often.  We will have to use it on 
occasion, however we have a large collection of formulas and properties that we can use to 
simplify our life considerably and will allow us to avoid using the definition whenever possible. 
 
We will introduce most of these formulas over the course of the next several sections.  We will 
start in this section with some of the basic properties and formulas.  We will give the properties 
and formulas in this section in both “prime” notation and “fraction” notation. 
 
Properties 

1) ( ) ( )( ) ( ) ( )f x g x f x g x′ ′ ′± = ±  OR     ( ) ( )( )d df dgf x g x
dx dx dx

± = ±  

In other words, to differentiate a sum or difference all we need to do is differentiate the 
individual terms and then put them back together with the appropriate signs.  Note as well 
that this property is not limited to two functions. 
 
See the Proof of Various Derivative Formulas section of the Extras chapter to see the 
proof of this property.  It’s a very simple proof using the definition of the derivative. 
 

2) ( )( ) ( )cf x cf x′ ′=  OR    ( )( )d dfcf x c
dx dx

= ,    c is any number 

In other words, we can “factor” a multiplicative constant out of a derivative if we need to.  
See the Proof of Various Derivative Formulas section of the Extras chapter to see the 
proof of this property. 

 
Note that we have not included formulas for the derivative of products or quotients of two 
functions here.  The derivative of a product or quotient of two functions is not the product or 
quotient of the derivatives of the individual pieces.  We will take a look at these in the next 
section. 
 
Next, let’s take a quick look at a couple of basic “computation” formulas that will allow us to 
actually compute some derivatives. 
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Formulas 

1) If ( )f x c=  then ( ) 0f x′ =  OR ( ) 0d c
dx

=  

The derivative of a constant is zero.  See the Proof of Various Derivative Formulas 
section of the Extras chapter to see the proof of this formula. 
 

2) If ( ) nf x x=  then ( ) 1nf x nx −′ =  OR ( ) 1n nd x nx
dx

−= , n is any number. 

This formula is sometimes called the power rule.  All we are doing here is bringing the 
original exponent down in front and multiplying and then subtracting one from the 
original exponent. 
 
Note as well that in order to use this formula n must be a number, it can’t be a variable.  
Also note that the base, the x, must be a variable, it can’t be a number.  It will be tempting 
in some later sections to misuse the Power Rule when we run in some functions where 
the exponent isn’t a number and/or the base isn’t a variable. 
 
See the Proof of Various Derivative Formulas section of the Extras chapter to see the 
proof of this formula.  There are actually three different proofs in this section.  The first 
two restrict the formula to n being an integer because at this point that is all that we can 
do at this point.  The third proof is for the general rule, but does suppose that you’ve read 
most of this chapter. 

 
These are the only properties and formulas that we’ll give in this section.  Let’s do compute some 
derivatives using these properties. 
 
Example 1  Differentiate each of the following functions. 

(a) ( ) 100 1215 3 5 46f x x x x= − + −    [Solution] 

(b) ( ) 6 62 7g t t t−= +    [Solution] 

(c) 3
5

18 23
3

y z z
z

= − + −    [Solution] 

(d) ( ) 3 7

5 2

29T x x x
x

= + −    [Solution] 

(e) ( ) 2h x x xπ= −    [Solution] 
Solution 
(a) ( ) 100 1215 3 5 46f x x x x= − + −  

In this case we have the sum and difference of four terms and so we will differentiate each of the 
terms using the first property from above and then put them back together with the proper sign.  
Also, for each term with a multiplicative constant remember that all we need to do is “factor” the 
constant out (using the second property) and then do the derivative.  
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 ( ) ( ) ( ) ( )99 11 0

99 11

15 100 3 12 5 1 0

1500 36 5

f x x x x

x x

′ = − + −

= − +
 

 
Notice that in the third term the exponent was a one and so upon subtracting 1 from the original 
exponent we get a new exponent of zero. Now recall that 0 1x = .  Don’t forget to do any basic 
arithmetic that needs to be done such as any multiplication and/or division in the coefficients. 

[Return to Problems] 
 
(b) ( ) 6 62 7g t t t−= +  

The point of this problem is to make sure that you deal with negative exponents correctly.  Here 
is the derivative. 

 ( ) ( ) ( )5 7

5 7

2 6 7 6

12 42

g t t t

t t

−

−

′ = + −

= −
 

 
Make sure that you correctly deal with the exponents in these cases, especially the negative 
exponents.  It is an easy mistake to “go the other way” when subtracting one off from a negative 
exponent and get 56t−−  instead of the correct 76t−− .  

[Return to Problems] 
 

(c) 3
5

18 23
3

y z z
z

= − + −  

Now in this function the second term is not correctly set up for us to use the power rule.  The 
power rule requires that the term be a variable to a power only and the term must be in the 
numerator.  So, prior to differentiating we first need to rewrite the second term into a form that 
we can deal with. 

 3 518 23
3

y z z z−= − + −  

Note that we left the 3 in the denominator and only moved the variable up to the numerator.  
Remember that the only thing that gets an exponent is the term that is immediately to the left of 
the exponent.  If we’d wanted the three to come up as well we’d have written, 

 
( )5

1
3z

 

so be careful with this!  It’s a very common mistake to bring the 3 up into the numerator as well 
at this stage. 
 
Now that we’ve gotten the function rewritten into a proper form that allows us to use the Power 
Rule we can differentiate the function.  Here is the derivative for this part. 

 2 6524 1
3

y z z−′ = + +  

[Return to Problems] 
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(d) ( ) 3 7

5 2

29T x x x
x

= + −  

All of the terms in this function have roots in them.  In order to use the power rule we need to 
first convert all the roots to fractional exponents.  Again, remember that the Power Rule requires 
us to have a variable to a number and that it must be in the numerator of the term.  Here is the 
function written in “proper” form. 

 

( ) ( )
( )

1 1
72 3

1
2 5

71
32

2
5

7 21
3 52

29

29

9 2

T x x x
x

x x
x

x x x
−

= + −

= + −

= + −

 

 
In the last two terms we combined the exponents.  You should always do this with this kind of 
term.  In a later section we will learn of a technique that would allow us to differentiate this term 
without combining exponents, however it will take significantly more work to do.  Also don’t 
forget to move the term in the denominator of the third term up to the numerator.  We can now 
differentiate the function. 

 
( )

4 71
3 52

4 71
3 52

1 7 29 2
2 3 5
1 63 4
2 3 5

T x x x x

x x x

−−

−−

⎛ ⎞ ⎛ ⎞′ = + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + +

 

 
Make sure that you can deal with fractional exponents.  You will see a lot of them in this class. 

[Return to Problems] 
 

(e) ( ) 2h x x xπ= −  

In all of the previous examples the exponents have been nice integers or fractions.  That is usually 
what we’ll see in this class.  However, the exponent only needs to be a number so don’t get 
excited about problems like this one.  They work exactly the same. 

 ( ) 1 2 12h x x xππ − −′ = −  
 
The answer is a little messy and we won’t reduce the exponents down to decimals.  However, this 
problem is not terribly difficult it just looks that way initially. 

[Return to Problems]
 
There is a general rule about derivatives in this class that you will need to get into the habit of 
using.  When you see radicals you should always first convert the radical to a fractional exponent 
and then simplify exponents as much as possible.  Following this rule will save you a lot of grief 
in the future. 
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Back when we first put down the properties we noted that we hadn’t included a property for 
products and quotients.  That doesn’t mean that we can’t differentiate any product or quotient at 
this point.  There are some that we can do. 
 
Example 2  Differentiate each of the following functions. 

(a) ( )3 2 22y x x x= −    [Solution] 

(b) ( )
5 2

2

2 5t th t
t

+ −
=    [Solution] 

Solution 

(a)  ( )3 2 22y x x x= −  

In this function we can’t just differentiate the first term, differentiate the second term and then 
multiply the two back together.  That just won’t work.  We will discuss this in detail in the next 
section so if you’re not sure you believe that hold on for a bit and we’ll be looking at that soon as 
well as showing you an example of what it won’t work. 
 
It is still possible to do this derivative however.  All that we need to do is convert the radical to 
fractional exponents (as we should anyway) and then multiply this through the parenthesis. 

 ( )
2 5 8

23 3 32 2y x x x x x= − = −  
 
Now we can differentiate the function. 

 
2 5
3 310 8

3 3
y x x′ = −  

[Return to Problems] 
 

(b) ( )
5 2

2

2 5t th t
t

+ −
=  

As with the first part we can’t just differentiate the numerator and the denominator and the put it 
back together as a fraction.  Again, if you’re not sure you believe this hold on until the next 
section and we’ll take a more detailed look at this. 
 
We can simplify this rational expression however as follows. 

 ( )
5 2

3 2
2 2 2

2 5 2 1 5t th t t t
t t t

−= + − = + −  

This is a function that we can differentiate. 
 ( ) 2 36 10h t t t−′ = +  

[Return to Problems]
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So, as we saw in this example there are a few products and quotients that we can differentiate.  If 
we can first do some simplification the functions will sometimes simplify into a form that can be 
differentiated using the properties and formulas in this section. 
 
Before moving on to the next section let’s work a couple of examples to remind us once again of 
some of the interpretations of the derivative. 
 

Example 3  Is ( ) 3
3

3002 4f x x
x

= + +  increasing, decreasing or not changing at 2x = − ? 

Solution 
We know that the rate of change of a function is given by the functions derivative so all we need 
to do is it rewrite the function (to deal with the second term) and then take the derivative. 

 ( ) ( )3 3 2 4 2
4

9002 300 4 6 900 6f x x x f x x x x
x

− −′= + + ⇒ = − = −  

 
Note that we rewrote the last term in the derivative back as a fraction.  This is not something 
we’ve done to this point and is only being done here to help with the evaluation in the next step.  
It’s often easier to do the evaluation with positive exponents.   
 
So, upon evaluating the derivative we get  

 ( ) ( ) 900 1292 6 4 32.25
32 4

f ′ − = − = − = −  

 
So, at 2x = −  the derivative is negative and so the function is decreasing at 2x = − . 
 

Example 4  Find the equation of the tangent line to ( ) 4 8f x x x= −  at 16x = . 
 
Solution 
We know that the equation of a tangent line is given by, 
 ( ) ( )( )y f a f a x a′= + −  
 
So, we will need the derivative of the function (don’t forget to get rid of the radical). 

 ( ) ( )
1 1
2 2

1
2

44 8 4 4 4f x x x f x x
x

−
′= − ⇒ = − = −  

Again, notice that we eliminated the negative exponent in the derivative solely for the sake of the 
evaluation.  All we need to do then is evaluate the function and the derivative at the point in 
question, 16x = . 

 ( ) ( ) ( ) 416 64 8 4 32 4 3
4

f f x′= − = = − =  

The tangent line is then, 
 ( )32 3 16 3 16y x x= + − = −  
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Example 5  The position of an object at any time t (in hours) is given by, 
 ( ) 3 22 21 60 10s t t t t= − + −  
Determine when the object is moving to the right and when the object is moving to the left. 
 
Solution 
The only way that we’ll know for sure which direction the object is moving is to have the velocity 
in hand.  Recall that if the velocity is positive the object is moving off to the right and if the 
velocity is negative then the object is moving to the left. 
 
So, we need the derivative since the derivative is the velocity of the object.  The derivative is, 

 ( ) ( ) ( )( )2 26 42 60 6 7 10 6 2 5s t t t t t t t′ = − + = − + = − −  
The reason for factoring the derivative will be apparent shortly. 
 
Now, we need to determine where the derivative is positive and where the derivative is negative.  
There are several ways to do this.  The method that I tend to prefer is the following. 
 
Since polynomials are continuous we know from the Intermediate Value Theorem that if the 
polynomial ever changes sign then it must have first gone through zero.  So, if we knew where 
the derivative was zero we would know the only points where the derivative might change sign. 
 
We can see from the factored form of the derivative that the derivative will be zero at 2t =  and 

5t = .  Let’s graph these points on a number line. 
 

 
 
Now, we can see that these two points divide the number line into three distinct regions.  In reach 
of these regions we know that the derivative will be the same sign.  Recall the derivative can only 
change sign at the two points that are used to divide the number line up into the regions. 
 
Therefore, all that we need to do is to check the derivative at a test point in each region and the 
derivative in that region will have the same sign as the test point.  Here is the number line with 
the test points and results shown. 
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Here are the intervals in which the derivative is positive and negative. 

 
positive : 2 & 5
negative : 2 5

t t
t

−∞ < < < < ∞
< <

 

 
We included negative t’s here because we could even though they may not make much sense for 
this problem.  Once we know this we also can answer the question.  The object is moving to the 
right and left in the following intervals. 

 
moving to the right : 2 & 5
moving to the left : 2 5

t t
t

−∞ < < < < ∞
< <

 

 
Make sure that you can do the kind of work that we just did in this example.  You will be asked 
numerous times over the course of the next two chapters to determine where functions are 
positive and/or negative.  If you need some review or want to practice these kinds of problems 
you should check out the Solving Inequalities section of my Algebra/Trig Review. 
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 Product and Quotient Rule 
In the previous section we noted that we had to be careful when differentiating products or 
quotients.  It’s now time to look at products and quotients and see why. 
 
First let’s take a look at why we have to be careful with products and quotients.  Suppose that we 
have the two functions ( ) 3f x x=  and ( ) 6g x x= .  Let’s start by computing the derivative of 

the product of these two functions.  This is easy enough to do directly. 

 ( ) ( ) ( )3 6 9 89f g x x x x′ ′′ = = =  
 
Remember that on occasion we will drop the (x) part on the functions to simplify notation 
somewhat.  We’ve done that in the work above. 
 
Now, let’s try the following. 

( ) ( ) ( )( )2 5 73 6 18f x g x x x x′ ′ = =  

 
So, we can very quickly see that. 

 ( )f g f g′ ′ ′≠  
In other words, the derivative of a product is not the product of the derivatives. 
 
Using the same functions we can do the same thing for quotients. 

 ( )
3

3 4
6 3 4

1 33f x x x
g x x x

− −
′′ ′⎛ ⎞⎛ ⎞ ⎛ ⎞ ′= = = = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 ( )
( )

2

5 3

3 1
6 2

f x x
g x x x

′
= =

′
 

So, again we can see that, 

f f
g g

′ ′⎛ ⎞
≠⎜ ⎟ ′⎝ ⎠

 

 
To differentiate products and quotients we have the Product Rule and the Quotient Rule. 
 
Product Rule 
If the two functions f(x) and g(x) are differentiable (i.e. the derivative exist) then the product is 
differentiable and, 

 ( )f g f g f g′ ′ ′= +  
 
The proof of the Product Rule is shown in the Proof of Various Derivative Formulas section of 
the Extras chapter. 
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Quotient Rule 
If the two functions  f(x) and g(x) are differentiable (i.e. the derivative exist) then the quotient is 
differentiable and, 

 2

f f g f g
g g

′ ′ ′⎛ ⎞ −
=⎜ ⎟

⎝ ⎠
 

 
Note that the numerator of the quotient rule is very similar to the product rule so be careful to not 
mix the two up! 
 
The proof of the Product Rule is shown in the Proof of Various Derivative Formulas section of 
the Extras chapter. 
 
Let’s do a couple of examples of the product rule. 
 
Example 1  Differentiate each of the following functions. 

(a) ( )3 2 22y x x x= −    [Solution] 

(b) ( ) ( )( )36 10 20f x x x x= − −    [Solution] 

 
Solution 
At this point there really aren’t a lot of reasons to use the product rule.  As we noted in the 
previous section all we would need to do for either of these is to just multiply out the product and 
then differentiate.   
 
With that said we will use the product rule on these so we can see an example or two.  As we add 
more functions to our repertoire and as the functions become more complicated the product rule 
will become more useful and in many cases required. 
 

(a) ( )3 2 22y x x x= −  

Note that we took the derivative of this function in the previous section and didn’t use the product 
rule at that point.  We should however get the same result here as we did then. 
 
Now let’s do the problem here.  There’s not really a lot to do here other than use the product rule.  
However, before doing that we should convert the radical to a fractional exponent as always. 

 ( )
2

23 2y x x x= −  
Now let’s take the derivative.  So we take the derivative of the first function times the second 
then add on to that the first function times the derivative of the second function. 

 ( ) ( )
1 2

23 32 2 2 2
3

y x x x x x
−

′ = − + −  
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This is NOT what we got in the previous section for this derivative.  However, with some 
simplification we can arrive at the same answer. 

 
2 5 2 5 2 5
3 3 3 3 3 34 2 10 82 2

3 3 3 3
y x x x x x x′ = − + − = −  

 
This is what we got for an answer in the previous section so that is a good check of the product 
rule. 

[Return to Problems] 
 

(b)  ( ) ( )( )36 10 20f x x x x= − −  

This one is actually easier than the previous one.  Let’s just run it through the product rule. 

 ( ) ( )( ) ( )( )2 3

3 2

18 1 10 20 6 20

480 180 40 10

f x x x x x

x x x

′ = − − + − −

= − + + −
 

 
Since it was easy to do we went ahead and simplified the results a little. 

[Return to Problems]
 
Let’s now work an example or two with the quotient rule.  In this case, unlike the product rule 
examples, a couple of these functions will require the quotient rule in order to get the derivative.  
The last two however, we can avoid the quotient rule if we’d like to as we’ll see. 
 
Example 2  Differentiate each of the following functions. 

(a) ( ) 3 9
2
zW z

z
+

=
−

   [Solution] 

(b) ( ) 2

4
2

xh x
x

=
−

   [Solution] 

(c) ( ) 6

4f x
x

=    [Solution] 

(d) 
6

5
wy =    [Solution] 

Solution 

 (a) ( ) 3 9
2
zW z

z
+

=
−

 

There isn’t a lot to do here other than to use the quotient rule.  Here is the work for this function. 

 
( ) ( ) ( )( )

( )

( )

2

2

3 2 3 9 1
2

15
2

z z
W z

z

z

− − + −
′ =

−

=
−

 

[Return to Problems] 
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(b) ( ) 2

4
2

xh x
x

=
−

 

Again, not much to do here other than use the quotient rule.  Don’t forget to convert the square 
root into a fractional exponent. 

 

( )
( ) ( ) ( )

( )

( )

( )

1 1
21 2 2

2
22

3 1 3
2 2 2

22

3 1
2 2

22

4 2 4 2

2

2 4 8

2

6 4

2

x x x x
h x

x

x x x

x

x x

x

−

−

−

− −
′ =

−

− −
=

−

− −
=

−

 

[Return to Problems] 
 

(c) ( ) 6

4f x
x

=  

It seems strange to have this one here rather than being the first part of this example given that it 
definitely appears to be easier than any of the previous two.  In fact, it is easier.  There is a point 
to doing it here rather than first.  In this case there are two ways to do compute this derivative.  
There is an easy way and a hard way and in this case the hard way is the quotient rule.  That’s the 
point of this example. 
 
Let’s do the quotient rule and see what we get. 

 ( )
( )( ) ( )

( )

6 5 5

2 12 76

0 4 6 24 24x x xf x
x xx

− −′ = = = −  

 
Now, that was the “hard” way.  So, what was so hard about it?  Well actually it wasn’t that hard, 
there is just an easier way to do it that’s all.  However, having said that, a common mistake here 
is to do the derivative of the numerator (a constant) incorrectly.  For some reason many people 
will give the derivative of the numerator in these kinds of problems as a 1 instead of 0!  Also, 
there is some simplification that needs to be done in these kinds of problems if you do the 
quotient rule. 
 
The easy way is to do what we did in the previous section. 

 ( ) 6 7
7

244 24f x x x
x

− −′ = = − = −  

 
Either way will work, but I’d rather take the easier route if I had the choice. 

[Return to Problems] 
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(d) 
6

5
wy =  

This problem also seems a little out of place.  However, it is here again to make a point.  Do not 
confuse this with a quotient rule problem.  While you can do the quotient rule on this function 
there is no reason to use the quotient rule on this.  Simply rewrite the function as 

 61
5

y w=  

and differentiate as always. 

56
5

y w′ =  

[Return to Problems]
 
Finally, let’s not forget about our applications of derivatives. 
 
Example 3  Suppose that the amount of air in a balloon at any time t is given by 

 ( )
36

4 1
tV t

t
=

+
 

Determine if the balloon is being filled with air or being drained of air at 8t = . 
 
Solution 
If the balloon is being filled with air then the volume is increasing and if it’s being drained of air 
then the volume will be decreasing.  In other words, we need to get the derivative so that we can 
determine the rate of change of the volume at 8t = . 
 
This will require the quotient rule. 

 

( ) ( ) ( )
( )

( )

( )

2 1
3 3

2

1 2
3 3

2

1
3

2
3

2

2 4 1 6 4
4 1

16 2
4 1

216

4 1

t t t
V t

t

t t
t

t
t

t

−

−

+ −
′ =

+

− +
=

+

− +

=
+

 

 
Note that we simplified the numerator more than usual here.  This was only done to make the 
derivative easier to evaluate. 
 
The rate of change of the volume at 8t =  is then, 
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( )

( )

( )
( ) ( ) ( ) ( )

21 2 1 2
3 3 3

2

216 2
48 8 2 8 8 2 4

33
63

2178

V
− + ⎛ ⎞′ = = = = =⎜ ⎟

⎝ ⎠

= −

 

 
So, the rate of change of the volume at 8t =  is negative and so the volume must be decreasing.  
Therefore air is being drained out of the balloon at 8t = . 
 
As a final topic let’s note that the product rule can be extended to more than two functions, for 
instance. 

 
( )

( )

f g h f g h f g h f g h

f g h w f g h w f g h w f g h w f g h w

′ ′ ′ ′= + +

′ ′ ′ ′ ′= + + +
 

 
With this section and the previous section we are now able to differentiate powers of x as well as 
sums, differences, products and quotients of these kinds of functions.  However, there are many 
more functions out there in the world that are not in this form.  The next few sections give many 
of these functions as well as give their derivatives. 
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 Derivatives of Trig Functions 
With this section we’re going to start looking at the derivatives of functions other than 
polynomials or roots of polynomials.  We’ll start this process off by taking a look at the 
derivatives of the six trig functions.  Two of the derivatives will be derived.  The remaining four 
are left to the reader and will follow similar proofs for the two given here. 
 
Before we actually get into the derivatives of the trig functions we need to give a couple of limits 
that will show up in the derivation of two of the derivatives. 
 
Fact 

 
0 0

sin cos 1lim 1 lim 0
θ θ

θ θ
θ θ→ →

−
= =  

 
See the Proof of Trig Limits section of the Extras chapter to see the proof of these two limits. 
 
Before we start differentiating trig functions let’s work a quick set of limit problems that this fact 
now allows us to do. 
 
Example 1  Evaluate each of the following limits. 

(a) 
0

sinlim
6θ

θ
θ→

   [Solution] 

(b) 
( )

0

sin 6
lim
x

x
x→

   [Solution] 

(c) 
( )0

lim
sin 7x

x
x→

   [Solution] 

(d) 
( )
( )0

sin 3
lim

sin 8t

t
t→

   [Solution] 

(e) 
( )

4

sin 4
lim

4x

x
x→

−
−

   [Solution] 

(f) 
( )

0

cos 2 1
lim
z

z
z→

−
   [Solution] 

Solution 

(a) 
0

sinlim
6θ

θ
θ→

 

There really isn’t a whole lot to this limit.  In fact, it’s only here to contrast with the next example 
so you can see the difference in how these work.  In this case since there is only a 6 in the 
denominator we’ll just factor this out and then use the fact. 

 ( )
0 0

sin 1 sin 1lim lim 1
6 6 6θ θ

θ θ
θ θ→ →

= = = 1 

[Return to Problems] 
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(b) 
( )

0

sin 6
lim
x

x
x→

 

Now, in this case we can’t factor the 6 out of the sine so we’re stuck with it there and we’ll need 
to figure out a way to deal with it.  To do this problem we need to notice that in the fact the 
argument of the sine is the same as the denominator (i.e. both θ ’s).  So we need to get both of the 
argument of the sine and the denominator to be the same.  We can do this by multiplying the 
numerator and the denominator by 6 as follows. 

 
( ) ( ) ( )

0 0 0

sin 6 6sin 6 sin 6
lim lim 6lim

6 6x x x

x x x
x x x→ → →

= =  

 
Note that we factored the 6 in the numerator out of the limit.  At this point, while it may not look 
like it, we can use the fact above to finish the limit.   
 
To see that we can use the fact on this limit let’s do a change of variables.  A change of variables 
is really just a renaming of portions of the problem to make something look more like something 
we know how to deal with.  They can’t always be done, but sometimes, such as this case, they 
can simplify the problem.  The change of variables here is to let 6xθ =  and then notice that as 

0x →  we also have 0θ → .  When doing a change of variables in a limit we need to change all 
the x’s into θ ’s and that includes the one in the limit. 
 
Doing the change of variables on this limit gives, 

 

( ) ( )

( )

( )

0 0

0

sin 6 sin 6
lim 6lim let 6

6
sin

6lim

6 1
6

x x

x x
x

x x

θ

θ

θ
θ

→ →

→

= =

=

=

=

 

 
And there we are.  Note that we didn’t really need to do a change of variables here.  All we really 
need to notice is that the argument of the sine is the same as the denominator and then we can use 
the fact.  A change of variables, in this case, is really only needed to make it clear that the fact 
does work. 

 [Return to Problems] 
 

(c) 
( )0

lim
sin 7x

x
x→

 

In this case we appear to have a small problem in that the function we’re taking the limit of here 
is upside down compared to that in the fact.  This is not the problem it appears to be once we 
notice that, 
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( ) ( )

1
sin 7sin 7

x
xx

x

=  

and then all we need to do is recall a nice property of limits that allows us to do , 

 

( ) ( )

( )

( )

0 0

0

0

0

1lim lim
sin 7sin 7

lim1

sin 7
lim

1
sin 7

lim

x x

x

x

x

x
xx

x

x
x

x
x

→ →

→

→

→

=

=

=

 

 
With a little rewriting we can see that we do in fact end up needing to do a limit like the one we 
did in the previous part.  So, let’s do the limit here and this time we won’t bother with a change of 
variable to help us out.  All we need to do is multiply the numerator and denominator of the 
fraction in the denominator by 7 to get things set up to use the fact.  Here is the work for this 
limit. 

 

( ) ( )

( )

( )( )

0

0

0

1lim
7sin 7sin 7 lim

7
1

sin 7
7 lim

7
1

7 1
1
7

x

x

x

x
xx

x

x
x

→

→

→

=

=

=

=

 

[Return to Problems] 
 

(d) 
( )
( )0

sin 3
lim

sin 8t

t
t→

 

This limit looks nothing like the limit in the fact, however it can be thought of as a combination 
of the previous two parts by doing a little rewriting.  First, we’ll split the fraction up as follows, 

 
( )
( )

( )
( )0 0

sin 3 sin 3 1lim lim
sin 8 1 sin 8t t

t t
t t→ →

=  

 
Now, the fact wants a t in the denominator of the first and in the numerator of the second.  This is 
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easy enough to do if we multiply the whole thing by t
t  (which is just one after all and so won’t 

change the problem) and then do a little rearranging as follows, 
 

 

( )
( )

( )
( )

( )
( )

( )
( )

0 0

0

0 0

sin 3 sin 3 1lim lim
sin 8 1 sin 8

sin 3
lim

sin 8

sin 3
lim lim

sin 8

t t

t

t t

t t t
t t t

t t
t t

t t
t t

→ →

→

→ →

=

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
At this point we can see that this really is two limits that we’ve seen before.  Here is the work for 
each of these and notice on the second limit that we’re going to work it a little differently than we 
did in the previous part.  This time we’re going to notice that it doesn’t really matter whether the 
sine is in the numerator or the denominator as long as the argument of the sine is the same as 
what’s in the numerator the limit is still one. 
 
Here is the work for this limit. 

 

( )
( )

( )
( )

( )
( )

( )

0 0 0

0 0

sin 3 3sin 3 8lim lim lim
sin 8 3 8sin 8

sin 3 1 83lim lim
3 8 sin 8

13
8

3
8

t t t

t t

t t t
t t t

t t
t t

→ → →

→ →

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 

 [Return to Problems] 

(e) 
( )

4

sin 4
lim

4x

x
x→

−
−

 

This limit almost looks the same as that in the fact in the sense that the argument of the sine is the 
same as what is in the denominator.  However, notice that, in the limit, x is going to 4 and not 0 as 
the fact requires.  However, with a change of variables we can see that this limit is in fact set to 
use the fact above regardless. 
 
So, let xθ = − 4  and then notice that as 4x →  we have 0θ → .  Therefore, after doing the 
change of variable the limit becomes, 

 
( )

4 0

sin 4 sinlim lim 1
4x

x
x θ

θ
θ→ →

−
= =

−
 

[Return to Problems] 
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(f)  
( )

0

cos 2 1
lim
z

z
z→

−
 

The previous parts of this example all used the sine portion of the fact.  However, we could just 
have easily used the cosine portion so here is a quick example using the cosine portion to 
illustrate this.  We’ll not put in much explanation here as this really does work in the same 
manner as the sine portion. 
  

 

( ) ( )( )

( )

( )

0 0

0

2 cos 2 1cos 2 1
lim lim

2
cos 2 1

2lim
2

2 0
0

z z

z

zz
z z

z
z

→ →

→

−−
=

−
=

=

 

 
All that is required to use the fact is that the argument of the cosine is the same as the 
denominator. 

[Return to Problems]
 
Okay, now that we’ve gotten this set of limit examples out of the way let’s get back to the main 
point of this section, differentiating trig functions. 
 
We’ll start with finding the derivative of the sine function.  To do this we will need to use the 
definition of the derivative.  It’s been a while since we’ve had to use this, but sometimes there 
just isn’t anything we can do about it.  Here is the definition of the derivative for the sine 
function. 
 

 ( )( ) ( ) ( )
0

sin sin
sin lim

h

x h xd x
dx h→

+ −
=  

 
Since we can’t just  plug in 0h = to evaluate the limit we will need to use the following trig 
formula on the first sine in the numerator.   
 ( ) ( ) ( ) ( ) ( )sin sin cos cos sinx h x h x h+ = +  
 
Doing this gives us, 

 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0 0

sin cos cos sin sin
sin lim

sin cos 1 cos sin
lim

cos 1 sin
limsin lim cos

h

h

h h

x h x h xd x
dx h

x h x h
h

h h
x x

h h

→

→

→ →

+ −
=

− +
=

−
= +
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As you can see upon using the trig formula we can combine the first and third term and then 
factor a sine out of that.  We can then break up the fraction into two pieces, both of which can be 
dealt with separately. 
 
Now, both of the limits here are limits as h approaches zero.  In the first limit we have a sin(x) 
and in the second limit we have a cos(x).  Both of these are only functions of x only and as h 
moves in towards zero this has no affect on the value of x.  Therefore, as far as the limits are 
concerned, these two functions are constants and can be factored out of their respective limits.  
Doing this gives, 

 ( )( ) ( ) ( ) ( ) ( )
0 0

cos 1 sin
sin sin lim cos lim

h h

h hd x x x
dx h h→ →

−
= +  

 
At this point all we need to do is use the limits in the fact above to finish out this problem. 

 ( )( ) ( )( ) ( )( ) ( )sin sin 0 cos 1 cosd x x x x
dx

= + =  

 
Differentiating cosine is done in a similar fashion.  It will require a different trig formula, but 
other than that is an almost identical proof.  The details will be left to you.  When done with the 
proof you should get, 

 ( )( ) ( )cos sind x x
dx

= −  

 
With these two out of the way the remaining four are fairly simple to get.  All the remaining four 
trig functions can be defined in terms of sine and cosine and these definitions, along with 
appropriate derivative rules, can be used to get their derivatives. 
 
Let’s take a look at tangent.  Tangent is defined as, 

 ( ) ( )
( )

sin
tan

cos
x

x
x

=  

 
Now that we have the derivatives of sine and cosine all that we need to do is use the quotient rule 
on this.  Let’s do that. 
 

 

( )( ) ( )
( )

( ) ( ) ( ) ( )( )
( )( )

( ) ( )
( )

2

2 2

2

sin
tan

cos

cos cos sin sin

cos

cos sin
cos

xd dx
dx dx x

x x x x

x

x x
x

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
− −

=

+
=
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Now, recall that ( ) ( )2 2cos sin 1x x+ =  and if we also recall the definition of secant in terms of 

cosine we arrive at, 

( )( ) ( ) ( )
( )

( )
( )

2 2

2

2

2

cos sin
tan

cos
1

cos

sec

x xd x
dx x

x

x

+
=

=

=

 

 
The remaining three trig functions are also quotients involving sine and/or cosine and so can be 
differentiated in a similar manner.  We’ll leave the details to you.  Here are the derivatives of all 
six of the trig functions. 
 
Derivatives of the six trig functions 

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

2 2

sin cos cos sin

tan sec cot csc

sec sec tan csc csc cot

d dx x x x
dx dx
d dx x x x
dx dx
d dx x x x x x
dx dx

= = −

= = −

= = −

 

 
At this point we should work some examples. 
 
Example 2  Differentiate each of the following functions. 

(a) ( ) ( ) ( )3sec 10cotg x x x= −    [Solution] 

(b) ( ) ( )4 23 tanh w w w w−= −    [Solution] 

(c) ( ) ( ) ( )5sin cos 4cscy x x x= +    [Solution] 

(d) ( ) ( )
( )

sin
3 2cos

t
P t

t
=

−
   [Solution] 

Solution 
(a) ( ) ( ) ( )3sec 10cotg x x x= −  

There really isn’t a whole lot to this problem.  We’ll just differentiate each term using the 
formulas from above. 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )

2

2

3sec tan 10 csc

3sec tan 10csc

g x x x x

x x x

′ = − −

= +
 

[Return to Problems] 

(b) ( ) ( )4 23 tanh w w w w−= −  

In this part we will need to use the product rule on the second term and note that we really will 
need the product rule here.  There is no other way to do this derivative unlike what we saw when 
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we first looked at the product rule.  When we first looked at the product rule the only functions 
we knew how to differentiate were polynomials and in those cases all we really needed to do was 
multiply them out and we could take the derivative without the product rule.  We are now getting 
into the point where we will be forced to do the product rule at times regardless of whether or not 
we want to. 
 
We will also need to be careful with the minus sign in front of the second term and make sure that 
it gets dealt with properly.  There are two ways to deal with this.  One way it to make sure that 
you use a set of parenthesis as follows, 

 
( ) ( ) ( )( )

( ) ( )

5 2 2

5 2 2

12 2 tan sec

12 2 tan sec

h w w w w w w

w w w w w

−

−

′ = − − +

= − − −
 

 
Because the second term is being subtracted off of the first term then the whole derivative of the 
second term must also be subtracted off of the derivative of the first term.  The parenthesis make 
this idea clear. 
 
A potentially easier way to do this is to think of the minus sign as part of the first function in the 
product.  Or, in other words the two functions in the product, using this idea, are 2w−  and 

( )tan w .  Doing this gives, 

 ( ) ( ) ( )5 2 212 2 tan sech w w w w w w−′ = − − −  
 
So, regardless of how you approach this problem you will get the same derivative. 

[Return to Problems] 
 
(c) ( ) ( ) ( )5sin cos 4cscy x x x= +  

As with the previous part we’ll need to use the product rule on the first term.  We will also think 
of the 5 as part of the first function in the product to make sure we deal with it correctly.  
Alternatively, you could make use of a set of parenthesis to make sure the 5 gets dealt with 
properly.  Either way will work, but we’ll stick with thinking of the 5 as part of the first term in 
the product.  Here’s the derivative of this function. 

 
( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )2 2

5cos cos 5sin sin 4csc cot

5cos 5sin 4csc cot

y x x x x x x

x x x x

′ = + − −

= − −
 

 [Return to Problems] 
 

(d)  ( ) ( )
( )

sin
3 2cos

t
P t

t
=

−
 

In this part we’ll need to use the quotient rule to take the derivative. 
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( ) ( ) ( )( ) ( ) ( )( )
( )( )

( ) ( ) ( )
( )( )

2

2 2

2

cos 3 2cos sin 2sin

3 2cos

3cos 2cos 2sin

3 2cos

t t t t
P t

t

t t t

t

− −
′ =

−

− −
=

−

 

Be careful with the signs when differentiating the denominator.  The negative sign we get from 
differentiating the cosine will cancel against the negative sign that is already there. 
 
This appears to be done, but there is actually a fair amount of simplification that can yet be done.  
To do this we need to factor out a “-2” from the last two terms in the numerator and the make use 
of the fact that ( ) ( )2 2cos sin 1θ θ+ = . 

 

( )
( ) ( ) ( )( )

( )( )
( )

( )( )

2 2

2

2

3cos 2 cos sin

3 2cos

3cos 2

3 2cos

t t t
P t

t

t

t

− +
′ =

−

−
=

−

 

[Return to Problems]
 
As a final problem here let’s not forget that we still have our standard interpretations to 
derivatives. 
 
Example 3  Suppose that the amount of money in a bank account is given by  
 ( ) ( ) ( )500 100cos 150sinP t t t= + −  
where t is in years.  During the first 10 years in which the account is open when is the amount of 
money in the account increasing? 
 
Solution 
To determine when the amount of money is increasing we need to determine when the rate of 
change is positive.  Since we know that the rate of change is given by the derivative that is the 
first thing that we need to find. 
 
 ( ) ( ) ( )100sin 150cosP t t t′ = − −  
 
Now, we need to determine where in the first 10 years this will be positive.  This is equivalent to 
asking where in the interval [0, 10] is the derivative positive.  Recall that both sine and cosine are 
continuous functions and so the derivative is also a continuous function.  The Intermediate Value 
Theorem then tells us that the derivative can only change sign if it first goes through zero.   
 
So, we need to solve the following equation. 
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( ) ( )
( ) ( )
( )
( )
( )

100sin 150cos 0

100sin 150cos

sin
1.5

cos

tan 1.5

t t

t t

t
t

t

− − =

= −

= −

= −

 

 
The solution to this equation is, 

 
2.1588 2 , 0, 1, 2,
5.3004 2 , 0, 1, 2,

t n n
t n n

π
π

= + = ± ±
= + = ± ±

…
…

 

 
If you don’t recall how to solve trig equations go back and take a look at the sections on solving 
trig equations in the Review chapter. 
 
We are only interested in those solutions that fall in the range [0, 10].  Plugging in values of n 
into the solutions above we see that the values we need are, 

 
2.1588 2.1588 2 8.4420
5.3004

t t
t

π= = + =
=

 

 
So, much like solving polynomial inequalities all that we need to do is sketch in a number line 
and add in these points.  These points will divide the number line into regions in which the 
derivative must always be the same sign.  All that we need to do then is choose a test point from 
each region to determine the sign of the derivative in that region. 
 
Here is the number line with all the information on it. 

 
 

So, it looks like the amount of money in the bank account will be increasing during the following 
intervals. 
 2.1588 5.3004 8.4420 10t t< < < <  
 
Note that we can’t say anything about what is happening after 10t =  since we haven’t done any 
work for t’s after that point. 
 
In this section we saw how to differentiate trig functions.  We also saw in the last example that 
our interpretations of the derivative are still valid so we can’t forget those. 
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Also, it is important that we be able to solve trig equations as this is something that will arise off 
and on in this course.  It is also important that we can do the kinds of number lines that we used 
in the last example to determine where a function is positive and where a function is negative.  
This is something that we will be doing on occasion in both this chapter and the next. 
 
 


