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 Optimization 
In this section we are going to look at optimization problems.  In optimization problems we are 
looking for the largest value or the smallest value that a function can take.  We saw how to one 
kind of optimization problem in the Absolute Extrema section where we found the largest and 
smallest value that a function would take on an interval. 
 
In this section we are going to look at another type of optimization problem.  Here we will be 
looking for the largest or smallest value of a function subject to some kind of constraint.  The 
constraint will be some condition (that can usually be described by some equation) that must 
absolutely, positively be true no matter what our solution is.  On occasion, the constraint will not 
be easily described by an equation, but in these problems it will be easy to deal with as we’ll see. 
 
This section is generally one of the more difficult for students taking a Calculus course.  One of 
the main reasons for this is that a subtle change of wording can completely change the problem.  
There is also the problem of identifying the quantity that we’ll be optimizing and the quantity that 
is the constraint and writing down equations for each. 
 
The first step in all of these problems should be to very carefully read the problem.  Once you’ve 
done that the next step is to identify the quantity to be optimized and the constraint.   
 
In identifying the constraint remember that the constraint is something that must true regardless 
of the solution.  In almost every one of the problems we’ll be looking at here one quantity will be 
clearly indicated as having a fixed value and so must be the constraint.  Once you’ve got that 
identified the quantity to be optimized should be fairly simple to get.  It is however easy to 
confuse the two if you just skim the problem so make sure you carefully read the problem first! 
 
Let’s start the section off with a simple problem to illustrate the kinds of issues will be dealing 
with here. 
 
Example 1  We need to enclose a field with a fence.  We have 500 feet of fencing material and a 
building is on one side of the field and so won’t need any fencing.  Determine the dimensions of 
the field that will enclose the largest area. 
 
Solution 
In all of these problems we will have two functions.  The first is the function that we are actually 
trying to optimize and the second will be the constraint.   Sketching the situation will often help 
us to arrive at these equations so let’s do that. 

 
In this problem we want to maximize the area of a field and we know that will use 500 ft of 
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fencing material.  So, the area will be the function we are trying to optimize and the amount of 
fencing is the constraint. The two equations for these are, 
 

 
Maximize : 
Contraint : 500 2

A xy
x y

=
= +

 

 
Okay, we know how to find the largest or smallest value of a function provided it’s only got a 
single variable.  The area function (as well as the constraint) has two variables in it and so what 
we know about finding absolute extrema won’t work.  However, if we solve the constraint for one 
of the two variables we can substitute this into the area and we will then have a function of a 
single variable. 
 
So, let’s solve the constraint for x.  Note that we could have just as easily solved for y but that 
would have led to fractions and so, in this case, solving for x will probably be best. 
 500 2x y= −  
 
Substituting this into the area function gives a function of y. 
 ( ) ( ) 2500 2 500 2A y y y y y= − = −  
 
Now we want to find the largest value this will have on the interval [0,250].  Note that the 
interval corresponds to taking 0y =  (i.e. no sides to the fence) and 250y =  (i.e. only two sides 
and no width, also if there are two sides each must be 250 ft to use the whole 500ft…).   
 
Note that the endpoints of the interval won’t make any sense from a physical standpoint if we 
actually want to enclose some area because they would both give zero area.  They do, however, 
give us a set of limits on y and so the Extreme Value Theorem tells us that we will have a 
maximum value of the area somewhere between the two endpoints.  Having these limits will also 
mean that we can use the process we discussed in the  Finding Absolute Extrema section earlier 
in the chapter to find the maximum value of the area. 
 
So, recall that the maximum value of a continuous function (which we’ve got here) on a closed 
interval (which we also have here) will occur at critical points and/or end points.  As we’ve 
already pointed out the end points in this case will give zero area and so don’t make any sense.  
That means our only option will be the critical points. 
 
So let’s get the derivative and find the critical points. 
 ( ) 500 4A y y′ = −  
 
Setting this equal to zero and solving gives a lone critical point of 125y = .  Plugging this into 
the area gives an area of 31250 ft2.  So according to the method from Absolute Extrema section 
this must be the largest possible area, since the area at either endpoint is zero. 
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Finally, let’s not forget to get the value of x and then we’ll have the dimensions since this is what 
the problem statement asked for.  We can get the x by plugging in our y into the constraint. 
 ( )500 2 125 250x = − =  
 
The dimensions of the field that will give the largest area, subject to the fact that we used exactly 
500 ft of fencing material, are 250 x 125. 
 
Don’t forget to actually read the problem and give the answer that was asked for.  These types of 
problems can take a fair amount of time/effort to solve and it’s not hard to sometimes forget what 
the problem was actually asking for. 
 
In the previous problem we used the method from the Finding Absolute Extrema section to find 
the maximum value of the function we wanted to optimize.  However, as we’ll see in later 
examples we won’t always have easy to find endpoints and/or dealing with the endpoints may not 
be easy to deal with.  Not only that, but this method requires that the function we’re optimizing be 
continuous on the interval we’re looking at, including the endpoints, and that may not always be 
the case. 
 
So, before proceeding with the anymore examples let’s spend a little time discussing some 
methods for determining if our solution is in fact the absolute minimum/maximum value that 
we’re looking for.  In some examples all of these will work while in others one or more won’t be 
all that useful.  However, we will always need to use some method for making sure that our 
answer is in fact that optimal value that we’re after. 
 
Method 1 : Use the method used in Finding Absolute Extrema. 
 
This is the method used in the first example above.  Recall that in order to use this method the 
range of possible optimal values, let’s call it I, must have finite endpoints.  Also, the function 
we’re optimizing (once it’s down to a single variable) must be continuous on I, including the 
endpoints.  If these conditions are met then we know that the optimal value, either the maximum 
or minimum depending on the problem, will occur at either the endpoints of the range or at a 
critical point that is inside the range of possible solutions. 
 
There are two main issues that will often prevent this method from being used however.  First, 
not every problem will actually have a range of possible solutions that have finite endpoints at 
both ends.  We’ll see at least one example of this as we work through the remaining examples.  
Also, many of the functions we’ll be optimizing will not be continuous once we reduce them 
down to a single variable and this will prevent us from using this method. 
 
Method 2 : Use a variant of the  First Derivative Test. 
 
In this method we also will need a range of possible optimal values, I.  However, in this case, 
unlike the previous method the endpoints do not need to be finite.  Also, we will need to require 
that the function be continuous on the interior I and we will only need the function to be 
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continuous at the end points if the endpoint is finite and the function actually exists at the 
endpoint.  We’ll see several problems where the function we’re optimizing doesn’t actually exist 
at one of the endpoints.  This will not prevent this method from being used. 
 
Let’s suppose that x c=  is a critical point of the function we’re trying to optimize, ( )f x .  We 

already know from the First Derivative Test that if ( ) 0f x′ >  immediately to the left of x c=  

(i.e. the function is increasing immediately to the left) and if ( ) 0f x′ <  immediately to the right 

of x c= (i.e. the function is decreasing immediately to the right) then x c=  will be a relative 
maximum for ( )f x .   

 
Now, this does not mean that the absolute maximum of ( )f x  will occur at x c= .  However, 

suppose that we knew a little bit more information.  Suppose that in fact we knew that ( ) 0f x′ >  

for all x in I such that x c< .  Likewise, suppose that we knew that ( ) 0f x′ <  for all x in I such 

that x c> .  In this case we know that to the left of x c= , provided we stay in I of course, the 
function is always increasing and to the right of x c= , again staying in I, we are always 
decreasing.  In this case we can say that the absolute maximum of ( )f x  in I will occur at x c= .   

 
Similarly, if we know that to the left of x c=  the function is always decreasing and to the right 
of x c=  the function is always increasing then the absolute minimum of ( )f x  in I will occur at 

x c= .   
 
Before we give a summary of this method let’s discuss the continuity requirement a little.  
Nowhere in the above discussion did the continuity requirement apparently come into play.  We 
require that that the function we’re optimizing to be continuous in I to prevent the following 
situation. 
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In this case, a relative maximum of the function clearly occurs at x c= .  Also, the function is 
always decreasing to the right and is always increasing to the left.  However, because of the 
discontinuity at x d= , we can clearly see that ( ) ( )f d f c>  and so the absolute maximum of 

the function does not occur at x c= .  Had the discontinuity at x d=  not been there this would 
not have happened and the absolute maximum would have occurred at x c= . 
 
Here is a summary of this method. 
 
First Derivative Test for Absolute Extrema 
Let I be the interval of all possible optimal values of ( )f x  and further suppose that ( )f x  is 

continuous on I , except possibly at the endpoints.  Finally suppose that x c=  is a critical point 
of ( )f x  and that c is in the interval I.  If we restrict x to values from I (i.e. we only consider 

possible optimal values of the function) then,  
 

1. If ( ) 0f x′ >  for all x c<  and if ( ) 0f x′ <  for all x c>  then ( )f c  will be the 

absolute maximum value of ( )f x  on the interval I. 

2. If ( ) 0f x′ <  for all x c<  and if ( ) 0f x′ >  for all x c>  then ( )f c  will be the 

absolute minimum value of ( )f x  on the interval I. 
 
Method 3 : Use the second derivative. 
 
There are actually two ways to use the second derivative to help us identify the optimal value of a 
function and both use the Second Derivative Test to one extent or another. 
 
The first way to use the second derivative doesn’t actually help us to identify the optimal value.  
What it does do is allow us to potentially exclude values and knowing this can simplify our work 
somewhat and so is not a bad thing to do.   
 
Suppose that we are looking for the absolute maximum of a function and after finding the critical 
points we find that we have multiple critical points.  Let’s also suppose that we run all of them 
through the second derivative test and determine that some of them are in fact relative minimums 
of the function.  Since we are after the absolute maximum we know that a maximum (of any 
kind) can’t occur at relative minimums and so we immediately know that we can exclude these 
points from further consideration.  We could do a similar check if we were looking for the 
absolute minimum.  Doing this may not seem like all that great of a thing to do, but it can, on 
occasion, lead to a nice reduction in the about of work that we need to in later steps. 
 
The second of way using the second derivative can be used to identify the optimal value of a 
function and in fact is very similar to the second method above.  In fact we will have the same 
requirements for this method as we did in that method.  We need an interval of possible optimal 
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values, I and the endpoint(s) may or may not be finite.  We’ll also need to require that the 
function, ( )f x  be continuous everywhere in I except possibly at the endpoints as above. 

 
Now, suppose that x c=  is a critical point and that ( ) 0f c′′ > .  The second derivative test tells 

us that x c=  must be a relative minimum of the function.  Suppose however that we also knew 
that ( ) 0f x′′ >  for all x in I.  In this case we would know that the function was concave up in all 

of I and that would in turn mean that the absolute minimum of ( )f x  in I would in fact have to 

be at x c= . 
 
Likewise if x c=  is a critical point and  ( ) 0f x′′ <  for all x in I then we would know that the 

function was concave down in I and that the absolute maximum of  ( )f x  in I would have to be 

at x c= . 
 
Here is a summary of this method. 
 
Second Derivative Test for Absolute Extrema 
Let I be the range of all possible optimal values of ( )f x  and further suppose that ( )f x  is 

continuous on I , except possibly at the endpoints.  Finally suppose that x c=  is a critical point 
of ( )f x  and that c is in the interval I.  Then,  

 
1. If ( ) 0f x′′ >  for all x in I  then ( )f c  will be the absolute minimum value of ( )f x  on 

the interval I. 
2. If ( ) 0f x′′ <  for all x in I  then ( )f c  will be the absolute maximum value of ( )f x  on 

the interval I. 
 
Before proceeding with some more examples we need to once again acknowledge that not every 
method discussed above will work for every problem and that, in some problems, more than one 
method will work.  There are also problems were we may need to use a combination of these 
methods to identify the optimal value.  Each problem will be different and we’ll need to see what 
we’ve got once we get the critical points before we decide which method might be best to use. 
 
Okay, let’s work some more examples. 
 
Example 2  We want to construct a box whose base length is 3 times the base width.  The 
material used to build the top and bottom cost $10/ft2 and the material used to build the sides cost 
$6/ft2.  If the box must have a volume of 50ft3 determine the dimensions that will minimize the 
cost to build the box. 
 
Solution 
First, a quick figure (probably not to scale…). 
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We want to minimize the cost of the materials subject to the constraint that the volume must be 
50ft3.  Note as well that the cost for each side is just the area of that side times the appropriate 
cost.   
 
The two functions we’ll be working with here this time are, 
 

 
( ) ( ) 2

2

Minimize : 10 2 6 2 2 60 48

Constraint : 50 3

C lw wh lh w wh

lwh w h

= + + = +

= =
 

 
As with the first example, we will solve the constraint for one of the variables and plug this into 
the cost.  It will definitely be easier to solve the constraint for h so let’s do that. 

 2

50
3

h
w

=  

 
Plugging this into the cost gives, 

 ( ) 2 2
2

50 80060 48 60
3

C w w w w
w w

⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

 

 
Now, let’s get the first and second (we’ll be needing this later…) derivatives, 

 ( ) ( )
3

2 3
2

120 800120 800 120 1600wC w w w C w w
w

− −−′ ′′= − = = +  

 
So, it looks like we’ve got two critical points here.  The first is obvious, 0w = , and it’s also just 
as obvious that this will not be the correct value.  We are building a box here and w is the box’s 
width and so since it makes no sense to talk about a box with zero width we will ignore this 
critical point.  This does not mean however that you should just get into the habit of ignoring zero 
when it occurs.  There are other types of problems where it will be a valid point that we will need 
to consider. 
 
The next critical point will come from determining where the numerator is zero. 

 3 3 3
800 20120 800 0 1.8821
120 3

w w− = ⇒ = = =  
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So, once we throw out 0w = , we’ve got a single critical point and we now have to verify that 
this is in fact the value that will give the absolute minimum cost.   
 
In this case we can’t use Method 1 from above.  First, the function is not continuous at one of the 
endpoints, 0w = , of our interval of possible values.  Secondly, there is no theoretical upper limit 
to the width that will give a box with volume of 50 ft3.  If w is very large then we would just need 
to make h very small. 
 
The second method listed above would work here, but that’s going to involve some calculations, 
not difficult calculations, but more work nonetheless. 
 
The third method however, will work quickly and simply here.  First, we know that whatever the 
value of w that we get it will have to be positive and we can see second derivative above that 
provided 0w >  we will have ( ) 0C w′′ >  and so in the interval of possible optimal values the 

cost function will always be concave up and so 1.8821w =  must give the absolute minimum 
cost. 
 
All we need to do now is to find the remaining dimensions. 
 

 ( )

( )22

1.8821
3 3 1.8821 5.6463
50 50 4.7050

3 3 1.8821

w
l w

h
w

=

= = =

= = =

 

 
Also, even though it was not asked for, the minimum cost is : ( )1.8821 $637.60C = . 

 
Example 3  We want to construct a box with a square base and we only have 10 m2 of material 
to use in construction of the box.  Assuming that all the material is used in the construction 
process determine the maximum volume that the box can have. 
 
Solution 
This example is in many ways the exact opposite of the previous example.  In this case we want 
to optimize the volume and the constraint this time is the amount of material used.  We don’t 
have a cost here, but if you think about it the cost is nothing more than the amount of material 
used times a cost and so the amount of material and cost are pretty much tied together.  If you can 
do one you can do the other as well.  Note as well that the amount of material used is really just 
the surface area of the box. 
 
As always, let’s start off with a quick sketch of the box. 
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Now, as mentioned above we want to maximize the volume and the amount of material is the 
constraint so here are the equations we’ll need. 

 
2

2

Maximize : 
Constraint : 10 2 2 2 2 4

V lwh w h
lw wh lh w wh

= =

= + + = +
 

 
We’ll solve the constraint for h and plug this into the equation for the volume. 

( ) ( )
2 2 2

2 310 2 5 5 1 5
4 2 2 2

w w wh V w w w w
w w w

⎛ ⎞− − −
= = ⇒ = = −⎜ ⎟

⎝ ⎠
 

 
Here are the first and second derivatives of the volume function. 

 ( ) ( ) ( )21
2 5 3 3V w w V w w′ ′′= − = −  

 
Note as well here that provided 0w > , which we know from a physical standpoint will be true, 
then the volume function will be concave down and so if we get a single critical point then we 
know that it will have to be the value that gives the absolute maximum. 
 
Setting the first derivative equal to zero and solving gives us the two critical points, 

 
5 1.2910
3

w = ± = ±  

 
In this case we can exclude the negative critical point since we are dealing with a length of a box 
and we know that these must be positive.  Do not however get into the habit of just excluding any 
negative critical point.  There are problems where negative critical points are perfectly valid 
possible solutions. 
 
Now, as noted above we got a single critical point, 1.2910, and so this must be the value that 
gives the maximum volume and since the maximum volume is all that was asked for in the 
problem statement the answer is then : ( )1.2910 2.1517 mV =  

 
Note that we could also have noted here that if 1.2910w <  then ( ) 0V w′ >  and likewise if 
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1.2910w >  then ( ) 0V w′ <  and so if we are to the left of the critical point the volume is always 

increasing and if we are to the right of the critical point the volume is always decreasing and so 
by the Method 2 above we can also see that the single critical point must give the absolute 
maximum of the volume. 
 
Finally, even though these weren’t asked for here are the dimension of the box that gives the 
maximum volume. 

( )
25 1.29101.2910 1.2910

2 1.2910
l w h −

= = = =  

 
So, it looks like in this case we actually have a perfect cube. 
 
In the last two examples we’ve seen that many of these optimization problems can in both 
directions so to speak.  In both examples we have essentially the same two equations: volume and 
surface area.  However, in Example 2 the volume was the constraint and the cost (which is 
directly related to the surface area) was the function we were trying to optimize.  In Example 3, 
on the other hand, we were trying to optimize the volume and the surface area was the constraint. 
 
It is important to not get so locked into one way of doing these problems that we can’t do it in the 
opposite direction as needed as well.  This is one of the more common mistakes that students 
make with these kinds of problems.  They see one problem and then try to make every other 
problem that seems to be the same conform to that one solution even if the problem needs to be 
worked differently.  Keep an open mind with these problems and make sure that you understand 
what is being optimized and what the constraint is before you jump into the solution. 
 
Also, as seen in the last example we used two different methods of verifying that we did get the 
optimal value.  Do not get too locked into one method of doing this verification that you forget 
about the other methods. 
 
Let’s work some another example that this time doesn’t involve a rectangle or box. 
 
Example 4  A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid.  
Determine the dimensions of the can that will minimize the amount of material used in its 
construction. 
 
Solution 
In this problem the constraint is the volume and we want to minimize the amount of material 
used.  This means that what we want to minimize is the surface area of the can and we’ll need to 
include both the walls of the can as well as the top and bottom “caps”.  Here is a quick sketch to 
get us started off. 
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We’ll need the surface area of this can and that will be the surface area of the walls of the can 
(which is really just a cylinder) and the area of the top and bottom caps (which are just disks, and 
don’t forget that there are two of them).   
 
Note that if you think of a cylinder of height h and radius r as just a bunch of disks/circles of 
radius r stacked on top of each other the equations for the surface area and volume are pretty 
simple to remember.  The volume is just the area of each of the disks times the height.  Similarly, 
the surface area is just the circumference of the each circle times the.  The equations for the 
volume and surface area of a cylinder are then, 

( )( ) ( )( )2 2 2 2V r h r h A r h rhπ π π π= = = =  

 
Next, we’re also going to need the required volume in a better set of units than liters.  Since we 
want length measurements for the radius and height we’ll need to use the fact that 1 Liter = 1000 
cm3 to convert the 1.5 liters into 1500 cm3.  This will in turn give a radius and height in terms of 
centimeters.  
 
Here are the equations that we’ll need for this problem and don’t forget that there two caps and so 
we’ll need the area from each. 

 
2

2

Minimize : 2 2
Constraint : 1500

A rh r
r h

π π

π

= +

=
 

 
In this case it looks like our best option is to solve the constraint for h and plug this into the area 
function. 

 ( ) 2 2
2 2

1500 1500 30002 2 2h A r r r r
r r r

π π π
π π

⎛ ⎞= ⇒ = + = +⎜ ⎟
⎝ ⎠

 

Notice that this formula will only make sense from a physical standpoint if 0r >  which is a good 
thing as it is not defined at 0r = . 
 
Next, let’s get the first derivative. 

 ( )
3

2 2

3000 4 30004 rA r r
r r

ππ −′ = − =  
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From this we can see that we have two critical points : 0r =  and 7503 6.2035r π= = .  The first 

critical point doesn’t make sense from a physical standpoint and so we can ignore that one.   
 
So we only have a single critical point to deal with here and notice that 6.2035 is the only value 
for which the derivative will be zero and hence the only place (with 0r >  of course) that the 
derivative may change sign.  It’s not difficult to check that if 6.2035r <  then ( ) 0A r′ <  and 

likewise if 6.2035r >  then ( ) 0A r′ > .  The variant of the First Derivative Test above then tells 

us that the absolute minimum value of the area (for 0r > )  must occur at 6.2035r = . 
 
All we need to do this is determine height of the can and we’ll be done. 

 
( )2

1500 12.4070
6.2035

h
π

= =  

 
Therefore if the manufacturer makes the can with a radius of 6.2035 cm and a height of 12.4070 
cm the least amount of material will be used to make the can. 
 
As an interesting side problem and extension to the above example you might want to show that 
for a given volume, L, the minimum material will be used if 2h r=  regardless of the volume of 
the can. 
 
In the examples to this point we’ve put in quite a bit of discussion in the solution.  In the 
remaining problems we won’t be putting in quite as much discussion and leave it to you to fill in 
any missing details. 
 
Example 5  We have a piece of cardboard that is 14 inches by 10 inches and we’re going to cut 
out the corners as shown below and fold up the sides to form a box, also shown below.  
Determine the height of the box that will give a maximum volume. 

 
Solution 
In this example, for the first time, we’ve run into a problem where the constraint doesn’t really 
have an equation.  The constraint is simply the size of the piece of cardboard and has already 
been factored into the figure above.  This will happen on occasion and so don’t get excited about 
it when it does.  This just means that we have one less equation to worry about. In this case we 
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want to maximize the volume. Here is the volume, in terms of h and its first derivative. 
 
 ( ) ( )( ) ( )2 3 214 2 10 2 140 48 4 140 96 12V h h h h h h h V h h h′= − − = − + = − +  

 
Setting the first derivative equal to zero and solving gives the following two critical points, 

 
12 39 1.9183, 6.0817

3
h ±

= =  

 
We now have an apparent problem.  We have two critical points and we’ll need to determine 
which one is the value we need.  In this case, this is easier than it looks.  Go back to the figure in 
the problem statement and notice that we can quite easily find limits on h.  The smallest h can be 
is 0h =  even though this doesn’t make much sense as we won’t get a box in this case.  Also 
from the 10 inch side we can see that the largest h can be is 5h =  although again, this doesn’t 
make much sense physically. 
 
So, knowing that whatever h is it must be in the range 0 5h≤ ≤  we can see that the second 
critical point is outside this range and so the only critical point that we need to worry about is 
1.9183. 
 
Finally, since the volume is defined and continuous on 0 5h≤ ≤  all we need to do is plug in the 
critical points and endpoints into the volume to determine which gives the largest volume.  Here 
are those function evaluations. 
 

( ) ( ) ( )0 0 1.9183 120.1644 5 0V V V= = =  

 
So, if we take 1.9183h =  we get a maximum volume. 
 
Example 6  A printer need to make a poster that will have a total area of 200 in2 and will have 1 
inch margins on the sides, a 2 inch margin on the top and a 1.5 inch margin on the bottom.  What 
dimensions will give the largest printed area?  
 
Solution 
This problem is a little different from the previous problems.  Both the constraint and the function 
we are going to optimize are areas.  The constraint is that the overall area of the poster must be 
200 in2 while we want to optimize the printed area (i.e. the area of the poster with the margins 
taken out). 
 
Here is a sketch of the poster and we can see that once we’ve taken the margins into account the 
width of the printed area is 2w −  and the height of the printer area is 3.5h − . 
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Here are the equations that we’ll be working with. 

( )( )Maximize : 2 3.5
Constraint : 200

A w h
wh

= − −

=
 

 
Solving the constraint for h and plugging into the equation for the printed area gives, 

( ) ( ) 200 4002 3.5 207 3.5A w w w
w w

⎛ ⎞= − − = − −⎜ ⎟
⎝ ⎠

 

The first and second derivatives are, 

 ( ) ( )
2

2 2 3

400 400 3.5 8003.5 wA w A w
w w w

−′ ′′= − + = = −  

From the first derivative we have the following three critical points. 
400
3.50 10.6904w w= = ± = ±  

However, since we’re dealing with the dimensions of a piece of paper we know that we must 
have 0w >  and so only 10.6904 will make sense.   
 
Also notice that provided 0w >  the second derivative will always be negative and so in the 
range of possible optimal values of the width the area function is always concave down and so we 
know that the maximum printed area will be at 10.6904 inchesw = . 
 
The height of the paper that gives the maximum printed area is then, 

200 18.7084 inches
10.6904

h = =  

 
We’ve worked quite a few examples to this point and we have quite a few more to work.  
However this section has gotten quite lengthy so let’s continue our examples in the next section.  
This is being done mostly because these notes are also being presented on the web and this will 
help to keep the load times on the pages down somewhat. 
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 More Optimization Problems 
Because these notes are also being presented on the web we’ve broken the optimization examples 
up into several sections to keep the load times to a minimum.  Do not forget the various methods 
for verifying that we have the optimal value that we looked at in the previous section.  In this 
section we’ll just use them without acknowledging so make sure you understand them and can 
use them.  So let’s get going on some more examples. 
 
Example 1  A window is being built and the bottom is a rectangle and the top is a semicircle.  If 
there is 12 meters of framing materials what must the dimensions of the window be to let in the 
most light? 
 
Solution 
Okay, let’s ask this question again is slightly easier to understand terms.  We want a window in 
the shape described above to have a maximum area (and hence let in the most light) and have a 
perimeter of 12 m (because we have 12 m of framing material).  Little bit easier to understand in 
those terms.  
 
Here’s a sketch of the window.  The height of the rectangular portion is h and because the 
semicircle is on top we can think of the width of the rectangular portion at 2r. 

 
 
The perimeter (our constraint) is the lengths of the three sides on the rectangular portion plus half 
the circumference of a circle of radius r.  The area (what we want to maximize) is the area of the 
rectangle plus half the area of a circle of radius r.  Here are the equations we’ll be working with 
in this example. 

 
21

2Maximize : 2
Constraint : 12 2 2

A hr r
h r r

π
π

= +

= + +
 

 
In this case we’ll solve the constraint for h and plug that into the area equation. 
 ( ) ( ) 2 2 21 1 1 1

2 2 2 26 2 6 12 2h r r A r r r r r r r rπ π π π= − − ⇒ = − − + = − −  

 
The first and second derivatives are, 
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 ( ) ( ) ( )12 4 4A r r A rπ π′ ′′= − + = − −  

 
We can see that the only critical point is, 

12 1.6803
4

r
π

= =
+

 

 
We can also see that the second derivative is always negative (in fact it’s a constant) and so we 
can see that the maximum area must occur at this point.  So, for the maximum area the semicircle 
on top must have a radius of 1.6803 and the rectangle must have the dimensions 3.3606 x 1.6803 
(h x 2r). 
 
Example 2  Determine the area of the largest rectangle that can be inscribed in a circle of radius 
4. 
 
Solution 
Huh?  This problem is best described with a sketch.  Here is what we’re looking for. 

 
We want the area of the largest rectangle that we can fit inside a circle and have all of its corners 
touching the circle. 
 
To do this problem it’s easiest to assume that the circle (and hence the rectangle) is centered at 
the origin.  Doing this we know that the equation of the circle will be 
 2 2 16x y+ =  
and that the right upper corner of the rectangle will have the coordinates ( ),x y .  This means that 

the width of the rectangle will be 2x and the height of the rectangle will be 2y.  The area of the 
rectangle will then be, 
 ( )( )2 2 4A x y xy= =  
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So, we’ve got the function we want to maximize (the area), but what is the constraint?  Well since 
the coordinates of the upper right corner must be on the circle we know that x and y must satisfy 
the equation of the circle.  In other words, the equation of the circle is the constraint. 
 
The first thing to do then is to solve the constraint for one of the variables. 

 216y x= ± −  
 
Since the point that we’re looking at is in the first quadrant we know that y must be positive and 
so we can take the “+” part of this.  Plugging this into the area and computing the first derivative 
gives, 

 
( )

( )

2

2 2
2

2 2

4 16

4 64 84 16
16 16

A x x x

x xA x x
x x

= −

−′ = − − =
− −

 

 
Before getting the critical points let’s notice that we can limit x to the range 0 4x≤ ≤  since we 
are assuming that x is in the first quadrant and must stay inside the circle.  Now the four critical 
points we get (two from the numerator and two from the denominator) are, 

 
2

2

16 0 4

64 8 0 2 2

x x

x x

− = ⇒ = ±

− = ⇒ = ±
 

 
We only want critical points that are in the range of possible optimal values so that means that we 

have two critical points to deal with : 2 2x =  and 4x = .  Notice however that the second 
critical point is also one of the endpoints of our interval. 
 
Now, area function is continuous and we have an interval of possible solution with finite 
endpoints so, 

( ) ( ) ( )0 0 2 2 32 4 0A A A= = =  

 

So, we can see that we’ll get the maximum area if 2 2x =  and the corresponding value of y is, 

 ( )2
16 2 2 8 2 2y = − = =  

 
It looks like the maximum area will be found if the inscribed rectangle is in fact a square. 
 
We need to again make a point that was made several times in the previous section.  We excluded 
several critical points in the work above.  Do not always expect to do that.  There will often be 
physical reasons to exclude zero and/or negative critical points, however, there will be problems 
where these are perfectly acceptable values.  You should always write down every possible 
critical point and then exclude any that can’t be possible solutions.  This keeps you in the habit of 
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finding all the critical points and then deciding which ones you actually need and that in turn will 
make it less likely that you’ll miss one when it is actually needed. 
 
Example 3  Determine the point(s) on 2 1y x= +  that are closest to (0,2). 
 
Solution 
Here’s a quick sketch of the situation. 

 
 

So, we’re looking for the shortest length of the dashed line.  Notice as well that if the shortest 
distance isn’t at 0x =  there will be two points on the graph, as we’ve shown above, that will give 
the shortest distance.  This is because the parabola is symmetric to the y-axis and the point in 
question is on the y-axis.  This won’t always be the case of course so don’t always expect two 
points in these kinds of problems. 
 
In this case we need to minimize the distance between the point (0,2) and any point that is one the 
graph (x,y).  Or, 

 ( ) ( ) ( )2 2 220 2 2d x y x y= − + − = + −  
 
If you think about the situation here it makes sense that the point that minimizes the distance will 
also minimize the square of the distance and so since it will be easier to work with we will use the 
square of the distance and minimize that.  So, the function that we’re going to minimize is, 

 ( )22 2 2D d x y= = + −  
 
The constraint in this case is the function itself since the point must lie on the graph of the 
function. 
 
At this point there are two methods for proceeding.  One of which will require significantly more 
work than the other.  Let’s take a look at both of them. 
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Solution 1 
In this case we will use the constraint in probably the most obvious way.  We already have the 
constraint solved for y so let’s plug that into the square of the distance and get the derivatives. 

 

( ) ( )
( ) ( )
( )

22 2 4 2

3 2

2

1 2 1

4 2 2 2 1

12 2

D x x x x x

D x x x x x

D x x

= + + − = − +

′ = − = −

′′ = −

 

 
So, it looks like there are three critical points for the square of the distance and notice that this 
time, unlike pretty much every previous example we’ve worked, we can’t exclude zero or 
negative numbers.  They are perfectly valid possible optimal values this time. 

 10,
2

x x= = ±  

 
Before going any farther, let’s check these in the second derivative to see if they are all relative 
minimums. 

 ( ) 1 10 2 0 4 4
2 2

D D D⎛ ⎞ ⎛ ⎞′′ ′′ ′′= − < = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
So, 0x =  is a relative maximum and so can’t possibly be the minimum distance.  That means 
that we’ve got two critical points. The question is how do we verify that these give the minimum 
distance and yes we did mean to say that both will give the minimum distance.  Recall from our 
sketch above that if x gives the minimum distance then so will –x and so if gives the minimum 
distance then the other should as well. 
 
None of the methods we discussed in the previous section will really work here.  We don’t have 
an interval of possible solutions with finite endpoints and both the first and second derivative 
change sign.  In this case however, we can still verify that they are the points that give the 
minimum distance.  
 

First, notice that if we are working on the interval 1 1
2 2

,⎡ ⎤−⎣ ⎦  then the endpoints of this interval 

(which are also the critical points) are in fact where the absolute minimum of the function occurs 
in this interval.   
 
Next we can see that if 1

2
x < −  then ( ) 0D x′ < .  Or in other words, if 1

2
x < −  the function is 

decreasing until it hits 1
2

x = −  and so must always be larger than the function at 1
2

x = − . 

 
Similarly,  1

2
x >  then ( ) 0D x′ >  and so the function is always increasing to the right of  

1
2

x = −  and so must be larger than the function at 1
2

x = − . 
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So, putting all of this together tells us that we do in fact have an absolute minimum at 1

2
x = ± . 

 
All that we need to do is to find the value of y for these points. 

 

1 3:
22

1 3:
22

x y

x y

= =

= − =
 

 
So, the points on the graph that are closest to (0,2) are, 

 1 3 1 3, ,
2 22 2

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Solution 2 
The first solution that we worked was actually the long solution.  There is a much shorter solution 
to this problem.  Instead of plugging y into the square of the distance let’s plug in x.  From the 
constraint we get, 
 2 1x y= −  
and notice that the only place x show up in the square of the distance it shows up as x2 and let’s 
just plug this into the square of the distance.  Doing this gives, 

 
( ) ( )
( )
( )

2 21 2 3 3

2 3

2

D y y y y y

D y y

D y

= − + − = − +

′ = −

′′ =

 

 
There is now a single critical point, 3

2y = , and since the second derivative is always positive we 

know that this point must give the absolute minimum.  So all that we need to do at this point is 
find the value(s) of x that go with this value of y. 

 2 3 1 11
2 2 2

x x= − = ⇒ = ±  

 
The points are then, 

 1 3 1 3, ,
2 22 2

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
So, for significantly less work we got exactly the same answer. 
 
This previous example had a couple of nice points.  First, as pointed out in the problem, we 
couldn’t exclude zero or negative critical points this time as we’ve done in all the previous 
examples.  Again, be careful to not get into the habit of always excluding them as we do many of 
the examples we’ll work. 
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Next, some of these problems will have multiple solution methods and sometimes one will be 
significantly easier than the other.  The method you use is up to you and often the difficulty of 
any particular method is dependent upon the person doing the problem.  One person may find one 
way easier and other person may find a different method easier. 
 
Finally, as we saw in the first solution method sometimes we’ll need to use a combination of the 
optimal value verification methods we discussed in the previous section. 
 
Let’s work some more examples. 
 
Example 4  A 2 feet piece of wire is cut into two pieces and once piece is bent into a square and 
the other is bent into an equilateral triangle.  Where should the wire cut so that the total area 
enclosed by both is minimum and maximum? 
 
Solution 
Before starting the solution recall that an equilateral triangle is a triangle with three equal sides 
and each of the interior angles are 3

π  (or 60° ). 

 
Now, this is another problem where the constraint isn’t really going to be given by an equation, it 
is simply that there is 2 ft of wire to work with and this will be taken into account in our work.   
 
So, let’s cut the wire into two pieces.  The first piece will have length x which we’ll bend into a 
square and each side will have length 4

x .  The second piece will then have length 2 x−  (we just 

used the constraint here…) and we’ll bend this into an equilateral triangle and each side will have 
length ( )1

3 2 x− .  Here is a sketch of all this. 

 
 
As noted in the sketch above we also will need the height of the triangle.  This is easy to get if 
you realize that the dashed line divides the equilateral triangle into two other triangles.  Let’s look 
at the right one.  The hypotenuse  is ( )1

3 2 x−  while the lower right angle is 3
π .  Finally the 

height is then the opposite side to the lower right angle so using basic right triangle trig we arrive 
at the height of the triangle as follows. 
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 ( ) ( ) ( ) ( )( ) ( )3 31 1
3 3 3 3 2 6sin 2 sin 2 2opp

hyp opp x x xπ π= ⇒ = − = − = −  

 
So, the total area of both objects is then, 

 ( ) ( ) ( )( ) ( )( ) ( )22 23 31 1
4 2 3 6 16 362 2 2xxA x x x x= + − − = + −  

 
Here’s the first derivative of the area. 

 ( ) ( )( )( )3 3 3
8 36 8 9 182 2 1x xA x x x′ = + − − = − +  

 
Setting this equal to zero and solving gives the single critical point of, 

8 3
9 4 3

0.8699x
+

= =  

 
Now, let’s notice that the problem statement asked for both the minimum and maximum enclosed 
area and we got a single critical point.  This clearly can’t be the answer to both, but this is not the 
problem that it might seem to be. 
 
Let’s notice that x must be in the range 0 2x≤ ≤  and since the area function is continuous we 
use the basic process for finding absolute extrema of a function. 
 

( ) ( ) ( )0 0.1925 0.8699 0.1087 2 0.25A A A= = =  

 
So, it looks like the minimum area will arise if we take 0.8699x =  while the maximum area will 
arise if we take the whole piece of wire and bend it into a square. 
 
As the previous problem illustrated we can’t get too locked into the answers always occurring at 
the critical points as they have to this point.  That will often happen, but one of the extrema in the 
previous problem was at an endpoint and that will happen on occasion. 
 
Example 5  A piece of pipe is being carried down a hallway that is 10 feet wide.  At the end of 
the hallway the there is a right-angled turn and the hallway narrows down to 8 feet wide.  What is 
the longest pipe that can be carried (always keeping it horizontal) around the turn in the hallway? 
 
Solution 
Let’s start off with a sketch of the situation so we can get a grip on what’s going on and how 
we’re going to have to go about solving this. 
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The largest pipe that can go around the turn will do so in the position shown above.  One end will 
be touching the outer wall of the hall way at A and C and the pipe will touch the inner corner at B.  
Let’s assume that the length of the pipe in the small hallway is 1L  while 2L  is the length of the 

pipe in the large hallway.  The pipe then has a length of 1 2L L L= + . 

 
Now, if 0θ =  then the pipe is completely in the wider hallway and we can see that as 0θ →  
then L → ∞ .  Likewise, if 2

πθ =  the pipe is completely in the narrow hallway and as 2
πθ →  

we also have L → ∞ .  So, somewhere in the interval 20 πθ< <  is an angle that will minimize L 

and oddly enough that is the length that we’re after.  The largest pipe that will fit around the turn 
will in fact be the minimum value of L. 
 
The constraint for this problem is not so obvious and there are actually two of them.  The 
constraints for this problem are the widths of the hallways.  We’ll use these to get an equation for 
L in terms of θ  and then we’ll minimize this new equation. 
 
So, using basic right triangle trig we can see that, 
 1 28sec 10csc 8sec 10cscL L Lθ θ θ θ= = ⇒ = +  

 
So, differentiating L gives, 
 8sec tan 10csc cotL θ θ θ θ′ = −  
 
Setting this equal to zero and solving gives, 

 

2
3

8sec tan 10csc cot
sec tan 10
csc cot 8

sin tan 5 tan 1.25
cos 4

θ θ θ θ
θ θ
θ θ

θ θ θ
θ

=

=

= ⇒ =

 

 
Solving for θ  gives, 
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 ( )13 3tan 1.25 tan 1.25 0.8226θ θ −= ⇒ = =  

 
So, if 0.8226θ =  radians then the pipe will have a minimum length and will just fit around the 
turn.  Anything larger will not fit around the turn and so the largest pipe that can be carried 
around the turn is, 
 
 ( ) ( )8sec 0.8226 10csc 0.8226 25.4033  feetL = + =  

 
Example 6  Two poles, one 6 meters tall and one 15 meters tall, are 20 meters apart.  A length of 
wire is attached to the top of each pole and it is also staked to the ground somewhere between the 
two poles.  Where should the wire be staked so that the minimum amount of wire is used? 
 
Solution 
As always let’s start off with a sketch of this situation. 

 
 
The total length of the wire is 1 2L L L= +  and we need to determine the value of x that will 

minimize this.  The constraint in this problem is that the poles must be 20 meters apart and that x 
must be in the range 0 20x≤ ≤ .  The first thing that we’ll need to do here is to get the length of 
wire in terms of x, which is fairly simple to do using the Pythagorean Theorem. 
 

 ( )22 2 2
1 236 225 20 36 625 40L x L x L x x x= + = + − = + + − +  

 
Not the nicest function we’ve had to work with but there it is.  Note however, that it is a 
continuous function and we’ve got an interval with finite endpoints and so finding the absolute 
minimum won’t require much more work than just getting the critical points of this function.  So, 
let’s do that.  Here’s the derivative. 
 

 
2 2

20
36 625 40

x xL
x x x

−′ = +
+ − +
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Setting this equal to zero gives, 

 

( )

2 2

2 2

20 0
36 625 40

625 40 20 36

x x
x x x

x x x x x

−
+ =

+ − +

− + = − − +

 

 
It’s probably been quite a while since you’ve been asked to solve something like this.  To solve 
this we’ll need to square both sides to get rid of the roots, but this will cause problems as well 
soon see.  Let’s first just square both sides and solve that equation. 
 

 

( ) ( ) ( )

( )( )

22 2 2

2 3 4 2 3 4

2

40 40
3 7

625 40 20 36

625 40 14400 1440 436 40
189 1440 14400 0

9 3 40 7 40 0 ,

x x x x x

x x x x x x x
x x

x x x x

− + = − +

− + = − + − +

+ − =

+ − = ⇒ = − =

 

 
Note that if you can’t do that factoring done worry, you can always just use the quadratic formula 
and you’ll get the same answers.   
 
Okay two issues that we need to discuss briefly here.  The first solution above (note that I didn’t 
call it a critical point…) doesn’t make any sense because it is negative and outside of the range of 
possible solutions and so we can ignore it.   
 
Secondly, and maybe more importantly, if you were to plug 40

3x = −  into the derivative you 

would not get zero and so is not even a critical point.  How is this possible?  It is a solution after 
all.  We’ll recall that we squared both sides of the equation above and it was mentioned at the 
time that this would cause problems.  We’ll we’ve hit those problems.  In squaring both sides 
we’ve inadvertently introduced a new solution to the equation.  When you do something like this 
you should ALWAYS go back and verify that the solutions that you are in fact solutions to the 
original equation.  In this case we were lucky and the “bad” solution also happened to be outside 
the interval of solutions we were interested in but that won’t always be the case. 
 
So, if we go back and do a quick verification we can in fact see that the only critical point is 

40
7 5.7143x = =  and this is nicely in our range of acceptable solutions. 

 
Now all that we need to do is plug this critical point and the endpoints of the wire into the length 
formula and identify the one that gives the minimum value. 
 ( ) ( ) ( )40

70 31 29 20 35.8806L L L= = =  

 
So, we will get the minimum length of wire if we stake it to the ground 40

7 feet from the smaller 

pole. 
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Let’s do a modification of the above problem that asks a completely different question. 
 
Example 7  Two poles, one 6 meters tall and one 15 meters tall, are 20 meters apart.  A length of 
wire is attached to the top of each pole and it is also staked to the ground somewhere between the 
two poles.  Where should the wire be staked so that the angle formed by the two pieces of wire at 
the stake is a maximum? 
 
Solution 
Here’s a sketch for this example. 

 
 
The equation that we’re going to need to work with here is not obvious.  Let’s start with the 
following fact. 

180δ θ ϕ π+ + = =  
 
Note that we need to make sure that the equation is equal to π  because of how we’re going to 
work this problem.  Now, basic right triangle trig tells us the following, 

 
( )
( )

16 6

115 15
20 20

tan tan

tan tan
x x

x x

δ δ

ϕ ϕ

−

−
− −

= ⇒ =

= ⇒ =
 

 
Plugging these into the equation above and solving for θ  gives, 
 ( ) ( )1 16 15

20tan tan xxθ π − −
−= − −  

Note that this is the reason for the π  in our equation.  The inverse tangents give angles that are in 
radians and so can’t use the 180 that we’re used to in this kind of equation. 
 
Next we’ll need the derivative so hopefully you’ll recall how to differentiate inverse tangents. 
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( ) ( ) ( )

( )
( )

( )( )

2 2 226 15
20

22

2

2 2 2 2

1 6 1 15
201 1

6 15
36 20 225

3 3 8 10706 15
36 40 625 36 40 625

xx x x

x x

x x
x x x x x x

θ
−

⎛ ⎞⎛ ⎞′ = − − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ −+ + ⎝ ⎠

= −
+ − +

− + −
= − =

+ − + + − +

 

 
Setting this equal to zero and solving give the following two critical points. 

 4 3226
3 20.2660, 17.5993x − ±= = −  

The first critical point is not in the interval of possible solutions and so we can exclude it. 
 
It’s not difficult to show that if 0 17.5993x≤ ≤  that 0θ ′ >  and if 17.5993 20x≤ ≤  that 

0θ ′ <  and so when 17.5993x =  we will get the maximum value of θ . 
 
Example 8  A trough for holding water is be formed by taking a piece of sheet metal 60 cm wide 
and folding the 20 cm on either end up as shown below.  Determine the angle θ  that will 
maximize the amount of water that the trough can hold. 

 
Solution 
Now, in this case we are being asked to maximize the volume that a trough can hold, but if you 
think about it the volume of a trough in this shape is nothing more than the cross-sectional area 
times the length of the trough.  So for a given length in order to maximize the volume all you 
really need to do is maximize the cross-sectional area. 
 
To get a formula for the cross-sectional area let’s redo the sketch above a little. 

 
 
We can think of the cross-sectional area as a rectangle in the middle with width 20 and height h 
and two identical triangles on either end with height h, base b and hypotenuse 20.  Also note that 
basic geometry tells us that the angle between the hypotenuse and the base must also be the same 
angle θ  that we had in our original sketch. 
Also, basic right triangle trig tells us that the base and height can be written as, 
 20cos 20sinb hθ θ= =  
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The cross-sectional area for the whole trough, in terms of θ , is then, 

( ) ( )( ) ( )1
220 2 400sin 20cos 20sin 400 sin sin cosA h bh θ θ θ θ θ θ= + = + = +  

 
The derivative of the area is, 

( ) ( )
( )( )

( )
( )( )

2 2

2 2

2

400 cos cos sin

400 cos cos 1 cos

400 2cos cos 1

400 2cos 1 cos 1

A θ θ θ θ

θ θ θ

θ θ

θ θ

′ = + −

= + − −

= + −

= − +

 

 
So, we have either, 

 
1
2 32cos 1 0 cos

cos 1 0 cos 1

πθ θ θ
θ θ θ π

− = ⇒ = ⇒ =

+ = ⇒ = − ⇒ =
 

 
However, we can see that θ  must be in the interval 20 πθ≤ ≤  or we won’t get a trough in the 

proper shape.  Therefore, the second critical point makes no sense and also note that we don’t 
need to add on the standard “ 2 nπ+ ” for the same reason. 
 
Finally, since the equation for the area is continuous all we need to do is plug in the critical point 
and the end points to find the one that gives the maximum area. 
 
 ( ) ( ) ( )3 20 0 519.6152 400A A Aπ π= = =  

 
So, we will get a maximum cross-sectional area, and hence a maximum volume, when 3

πθ = . 
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 Indeterminate Forms and L’Hospital’s Rule 
Back in the chapter on Limits we saw methods for dealing with the following limits. 

 
2 2

24

16 4 5lim lim
4 1 3x x

x x x
x x→ →∞

− −
− −

 

 
In the first limit if we plugged in 4x =  we would get 0/0 and in the second limit if we “plugged” 
in infinity we would get ∞ −∞  (recall that as x goes to infinity a polynomial will behave in the 
same fashion that it’s largest power behaves).  Both of these are called indeterminate forms.  In 
both of these cases there are competing interests or rules and it’s not clear which will win out. 
 
In the case of 0/0 we typically think of a fraction that has a numerator of zero as being zero.  
However, we also tend to think of fractions in which the denominator is going to zero as infinity 
or might not exist at all.  Likewise, we tend to think of a fraction in which the numerator and 
denominator are the same as one.  So, which will win out?  Or will neither win out and they all 
“cancel out” and the limit will reach some other value? 
 
In the case of ∞ −∞  we have a similar set of problems.  If the numerator of a fraction is going to 
infinity we tend to think of the whole fraction going to infinity.  Also if the denominator is going 
to infinity we tend to think of the fraction as going to zero.  We also have the case of a fraction in 
which the number and denominator are the same (ignoring the minus sign) and so we might get -
1.  Again, it’s not clear which of these will win out, if any of them will win out. 
 
With the second limit there is the further problem that infinity isn’t really a number and so we 
really shouldn’t even treat it like a number.  Much of the time it simply won’t behave as we 
would expect it to if it was a number.  To look a little more into this check out the Types of 
Infinity section in the Extras chapter at the end of this document. 
 
This is the problem with indeterminate forms.  It’s just not clear what is happening in the limit.  
There are other types of indeterminate forms as well.  Some other types are, 
 
 ( )( ) 0 00 1 0∞± ∞ ∞ ∞ − ∞  
 
These all have competing interests or rules that tell us what should happen and it’s just not clear 
which, if any, of the interests or rules will win out.  The topic of this section is how to deal with 
these kinds of limits. 
 
As already pointed out we do know how to deal with some kinds of indeterminate forms already.  
For the two limits above we work them as follows. 

 ( )
2

4 4

16lim lim 4 8
4x x

x x
x→ →

−
= + =

−
 


