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and our limits would be u’s.  Here’s the rest of this problem. 
 

( ) ( )

130 2 3 2
2

33

3
2

12 1 4
9

1 1 133 33 33 1
9 9 9

t t dt u
−

− = −

⎛ ⎞= − − − = −⎜ ⎟
⎝ ⎠

∫
 

 
We got exactly the same answer and this time didn’t have to worry about going back to t’s in our 
answer. 
 
So, we’ve seen two solution techniques for computing definite integrals that require the 
substitution rule.  Both are valid solution methods and each have their uses.  We will be using the 
second exclusively however since it makes the evaluation step a little easier. 
 
Let’s work some more examples. 
 
Example 2  Evaluate each of the following. 

(a) ( )( )5 52

1
1 2w w w dw

−
+ +∫    [Solution] 

(b) 
( )

6

3
2

4 5
1 21 2

dx
xx

−

−

−
++

⌠
⎮
⌡

   [Solution] 

(c) ( )
1
2

0
2cosy y dyπ+∫ e    [Solution] 

(d) ( )
0

3

3sin 5cos
2
z z dz

π
π⎛ ⎞ − −⎜ ⎟

⎝ ⎠
⌠
⎮
⌡

   [Solution] 

Solution 
Since we’ve done quite a few substitution rule integrals to this time we aren’t going to put a lot of 
effort into explaining the substitution part of things here. 
 

(a) ( )( )5 52

1
1 2w w w dw

−
+ +∫  

The substitution and converted limits are, 

 ( ) ( )2 12 2 2 1
2

1 1 5 35

u w w du w dw w dw du

w u w u

= + = + ⇒ + =

= − ⇒ = − = ⇒ =
 

 
Sometimes a limit will remain the same after the substitution.  Don’t get excited when it happens 
and don’t expect it to happen all the time. 
 
Here is the integral, 
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( )( )5 3552 5

1 1

35
6

1

11 2
2
1 153188802

12

w w w dw u du

u

− −

−

+ + =

= =

∫ ∫
 

 
Don’t get excited about large numbers for answers here.  Sometime they are.  That’s life. 

[Return to Problems] 
 

(b) 
( )

6

3
2

4 5
1 21 2

dx
xx

−

−

−
++

⌠
⎮
⌡

 

Here is the substitution and converted limits for this problem, 

 
11 2 2
2

2 3 6 11

u x du dx dx du

x u x u

= + = ⇒ =

= − ⇒ = − = − ⇒ = −
 

 
The integral is then, 

 

( )

( )

6 11
3

3
32

11
2

3

4 5 1 54
1 2 21 2

1 2 5ln
2
1 2 1 25ln11 5ln 3
2 121 2 9
112 5 5ln11 ln 3
1089 2 2

dx u du
x ux

u u

− −
−

−−

−
−

−

− = −
++

= − −

⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − +

⌠ ⌠⎮⎮ ⌡⌡

 

[Return to Problems] 
 

(c) ( )
1
2

0
2cosy y dyπ+∫ e  

This integral needs to be split into two integrals since the first term doesn’t require a substitution 
and the second does. 

 ( ) ( )
1 1 1
2 2 2

0 0 0
2cos 2cosy yy dy dy y dyπ π+ = +∫ ∫ ∫e e  

 
Here is the substitution and converted limits for the second term. 

 

1

10 0
2 2

u y du dy dy du

y u y u

π π
π

π

= = ⇒ =

= ⇒ = = ⇒ =
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Here is the integral. 

 

( ) ( )
1 1
2 2 2

0 0 0

1 2
2
0

0

1
02

1
2

22cos cos

2 sin

2 2sin sin 0
2

21

y y

y

y dy dy u du

u

π

π

π
π

π

π
π π

π

+ = +

= +

= − + −

= − +

∫ ∫ ∫e e

e

e e

e

 

[Return to Problems] 

(d) ( )
0

3

3sin 5cos
2
z z dz

π
π⎛ ⎞ − −⎜ ⎟

⎝ ⎠
⌠
⎮
⌡

 

This integral will require two substitutions.  So first split up the integral so we can do a 
substitution on each term. 

 ( ) ( )
0 0

0

3
3 3

3sin 5cos 3sin 5cos
2 2
z zz dz dz z dzπ

π π
π π⎛ ⎞ ⎛ ⎞− − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⌠ ⌠
⎮ ⎮
⌡ ⌡ ∫  

 
There are the two substitutions for these integrals. 

 

1 2
2 2

0 0
3 6

zu du dz dz du

z u z uπ π

= = ⇒ =

= ⇒ = = ⇒ =
 

 

 2 0
3 3

v z dv dz dz dv

z v z v

π
π π π

= − = − ⇒ = −

= ⇒ = = ⇒ =
 

 
Here is the integral for this problem. 

 

( ) ( ) ( )

( ) ( )

0
0

2
6 3

3
0

2
6 3

3sin 5cos 6 sin 5 cos
2

6cos 5sin

5 33 3 6
2

3 6
2

z z dz u du v dv

u v

π

π π
π

π
π π

π⎛ ⎞ − − = +⎜ ⎟
⎝ ⎠

= − +

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠

= −

⌠
⎮
⌡ ∫ ∫

 

[Return to Problems]
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The next set of examples is designed to make sure that we don’t forget about a very important 
point about definite integrals. 
 
Example 3  Evaluate each of the following. 

(a) 
5

2
5

4
2 8

t dt
t− −

⌠⎮
⌡

   [Solution] 

(b) 
5

2
3

4
2 8

t dt
t−

⌠⎮
⌡

   [Solution] 

Solution 

(a) 
5

2
5

4
2 8

t dt
t− −

⌠⎮
⌡

 

Be careful with this integral.  The denominator is zero at 1
2t = ±  and both of these are in the 

interval of integration.  Therefore, this integrand is not continuous in the interval and so the 
integral can’t be done.  
 
Be careful with definite integrals and be on the lookout for division by zero problems.  In the 
previous section they were easy to spot since all the division by zero problems that we had there 
were at zero.  Once we move into substitution problems however they will not always be so easy 
to spot so make sure that you first take a quick look at the integrand and see if there are any 
continuity problems with the integrand and if they occur in the interval of integration. 

[Return to Problems] 
 

(b)  
5

2
3

4
2 8

t dt
t−

⌠⎮
⌡

 

Now, in this case the integral can be done because the two points of discontinuity, 1
2t = ± , are 

both outside of the interval of integration.  The substitution and converted limits in this case are, 

 
2 12 8 16

16
3 70 5 198

u t du t dt dz dt

t u t u

= − = − ⇒ = −

= ⇒ = − = ⇒ = −
 

 
The integral is then, 

 

( ) ( )( )

5 198

2
3 70

198

70

4 4 1
2 8 16

1 ln
4
1 ln 198 ln 70
4

t dt du
t u

u

−

−

−

−

= −
−

= −

= − −

⌠ ⌠⎮ ⎮
⌡ ⌡

 

[Return to Problems] 
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Let’s work another set of examples.  These are a little tougher (at least in appearance) than the 
previous sets. 
 
Example 4  Evaluate each of the following. 

(a) ( )( )
0

ln 1
cos 1x x dx

π−
−∫ e e    [Solution] 

(b) 
[ ]

6

2

4ln t
dt

t
⌠
⎮
⌡

e

e

   [Solution] 

(c) 
( ) ( )

( )

9

3

12

sec 3 tan 3

2 sec 3

P P
dP

P

π

π +

⌠
⎮
⌡

   [Solution] 

(d) ( ) ( )( )2 cos cos sinx x dx
π

π−∫    [Solution] 

(e) 

22

2
1

50

w
dw

w
⌠
⎮⎮
⌡

e
   [Solution] 

Solution 

(a) ( )( )
0

ln 1
cos 1x x dx

π−
−∫ e e  

The limits are a little unusual in this case, but that will happen sometimes so don’t get too excited 
about it.  Here is the substitution.  

 

( ) ( ) ( )

0

ln 1

1
0 1 1 1 0

ln 1 1 1 1

x xu du dx
x u

x u ππ π π−

= − = −

= ⇒ = − = − =

= − ⇒ = − = − − =

e e
e

e

 

 
The integral is then, 

 

( )( )

( )
( )

0 0

0

ln 1
cos 1 cos

sin

sin sin 0 0

x x dx u du

u

π

π

π

π

−
− = −

= −

= − − =

∫ ∫e e

 

[Return to Problems] 
 

(b) 
[ ]

6

2

4ln t
dt

t
⌠
⎮
⌡

e

e

 

Here is the substitution and converted limits for this problem. 
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2 2 6 6

1ln

ln 2 ln 6

u t du dt
t

t u t u

= =

= ⇒ = = = ⇒ = =e e e e
 

The integral is, 

 

[ ]
6

2

4
6 4

2

6
5

2

ln

1
5
7744

5

t
dt u du

t

u

=

=

=

⌠
⎮
⌡ ∫

e

e

 

[Return to Problems] 

(c) 
( ) ( )

( )

9

3

12

sec 3 tan 3

2 sec 3

P P
dP

P

π

π +

⌠
⎮
⌡

 

Here is the substitution and converted limits and don’t get too excited about the substitution.  It’s 
a little messy in the case, but that can happen on occasion. 
 

 

( ) ( ) ( ) ( ) ( ) 12 sec 3 3sec 3 tan 3 sec 3 tan 3
3

2 sec 2 2
12 4

2 sec 4
9 3

u P du P P dP P P dP du

P u

P u

π π

π π

= + = ⇒ =

⎛ ⎞= ⇒ = + = +⎜ ⎟
⎝ ⎠
⎛ ⎞= ⇒ = + =⎜ ⎟
⎝ ⎠

 

Here is the integral, 

 

( ) ( )
( )

( )

( )

19 4
3

2 23

12
42

3

2 2

23
32

2
3

sec 3 tan 3 1
32 sec 3

1
2

1 4 2 2
2

1 8 2 2
2

P P
dP u du

P

u

π

π

−

+

+

=
+

=

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

∫

 

 
So, not only was the substitution messy, but we also a messy answer, but again that’s life on 
occasion. 

[Return to Problems] 
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(d) ( ) ( )( )2 cos cos sinx x dx
π

π−∫  

This problem not as bad as it looks.  Here is the substitution and converted limits. 

 
( )

sin cos

sin 1 sin 0
2 2

u x du x dx

x u x uπ π π π

= =

= ⇒ = = = − ⇒ = − =
 

 
The cosine in the very front of the integrand will get substituted away in the differential and so 
this integrand actually simplifies down significantly.  Here is the integral. 

 

( ) ( )( )

( )
( ) ( )
( )

1
2

0

1

0

cos cos sin cos

sin

sin 1 sin 0

sin 1

x x dx u du

u

π

π−
=

=

= −

=

∫ ∫
 

Don’t get excited about these kinds of answers.  On occasion we will end up with trig function 
evaluations like this. 

[Return to Problems] 
 

(e) 

22

2
1

50

w
dw

w
⌠
⎮⎮
⌡

e
 

This is also a tricky substitution (at least until you see it).  Here it is, 

 
2 2

2 2 1 1
2

12 1 100
50

u du dw dw du
w w w

w u w u

= = − ⇒ = −

= ⇒ = = ⇒ =
 

 
Here is the integral. 

 

( )

22
1

2 100
1
50

1

100

1 100

1
2

1
2
1
2

w
u

u

dw du
w

= −

= −

= − −

⌠
⎮⎮
⌡

∫
e e

e

e e

 

[Return to Problems]
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In this last set of examples we saw some tricky substitutions and messy limits, but these are a fact 
of life with some substitution problems and so we need to be prepared for dealing with them 
when the happen. 
 
Even and Odd Functions 
This is the last topic that we need to discuss in this chapter.  It is probably better suited in the 
previous section, but that section has already gotten fairly large so I decided to put it here. 
 
First, recall that an even function is any function which satisfies, 
 ( ) ( )f x f x− =  
Typical examples of even functions are, 
 ( ) ( ) ( )2 cosf x x f x x= =  
 
An odd function is any function which satisfies, 
 ( ) ( )f x f x− = −  
The typical examples of odd functions are, 
 ( ) ( ) ( )3 sinf x x f x x= =  
 
There are a couple of nice facts about integrating even and odd functions over the interval [-a,a].  
If f(x) is an even function then, 

 ( ) ( )
0

2
a a

a
f x dx f x dx

−
=∫ ∫  

Likewise, if f(x) is an odd function then, 

 ( ) 0
a

a
f x dx

−
=∫  

 
Note that in order to use these facts the limit of integration must be the same number, but 
opposite signs! 
 
Example 5  Integrate each of the following. 

(a) 
2 4 2

2
4 1x x dx

−
− +∫    [Solution] 

(b) ( )
10 5

10
sinx x dx

−
+∫    [Solution] 

Solution 
Neither of these are terribly difficult integrals, but we can use the facts on them anyway. 
 

(a) 
2 4 2

2
4 1x x dx

−
− +∫  

In this case the integrand is even and the interval is correct so, 
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2 24 2 4 2

2 0

2
5 3

0

4 1 2 4 1

4 12
5 3

748
15

x x dx x x dx

x x x

−
− + = − +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

=

∫ ∫

 

So, using the fact cut the evaluation in half (in essence since one of the new limits was zero). 
[Return to Problems] 

 

(b) ( )
10 5

10
sinx x dx

−
+∫  

The integrand in this case is odd and the interval is in the correct form and so we don’t even need 
to integrate.  Just use the fact. 

 ( )
10 5

10
sin 0x x dx

−
+ =∫  

[Return to Problems]
 
Note that the limits of integration are important here.  Take the last integral as an example.  A 
small change to the limits will not give us zero. 
 

 ( ) ( ) ( )
9 5

10

468559sin cos 10 cos 9 78093.09461
6

x x dx
−

+ = − − = −∫  

 
The moral here is to be careful and not misuse these facts. 
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Applications of Integrals 

 

 Introduction 
In this last chapter of this course we will be taking a look at a couple of applications of integrals.  
There are many other applications, however many of them require integration techniques that are 
typically taught in Calculus II.  We will therefore be focusing on applications that can be done 
only with knowledge taught in this course. 
 
Because this chapter is focused on the applications of integrals it is assumed in all the examples 
that you are capable of doing the integrals.  There will not be as much detail in the integration 
process in the examples in this chapter as there was in the examples in the previous chapter. 
 
Here is a listing of applications covered in this chapter. 
 
Average Function Value – We can use integrals to determine the average value of a function. 
 
Area Between Two Curves – In this section we’ll take a look at determining the area between 
two curves. 
 
Volumes of Solids of Revolution / Method of Rings – This is the first of two sections devoted 
to find the volume of a solid of revolution.  In this section we look that the method of rings/disks. 
 
Volumes of Solids of Revolution / Method of Cylinders – This is the second section devoted to 
finding the volume of a solid of revolution.  Here we will look at the method of cylinders. 
 
Work – The final application we will look at is determining the amount of work required to move 
an object. 
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 Average Function Value 
The first application of integrals that we’ll take a look at is the average value of a function.  The 
following fact tells us how to compute this. 
 
Average Function Value 
The average value of a function ( )f x  over the interval [a,b] is given by, 

 ( )1 b

avg a
f f x dx

b a
=

− ∫  

 
To see a justification of this formula see the Proof of Various Integral Properties section of the 
Extras chapter. 
 
Let’s work a couple of quick examples. 
 
Example 1  Determine the average value of each of the following functions on the given 
interval. 

(a) ( ) ( )2 5 6cosf t t t tπ= − +  on 
51,
2

⎡ ⎤−⎢ ⎥⎣ ⎦
   [Solution] 

(b) ( ) ( ) ( )1 cos 2sin 2 zR z z −= e  on [ ],π π−    [Solution] 
 
Solution 

(a) ( ) ( )2 5 6cosf t t t tπ= − +  on 
51,
2

⎡ ⎤−⎢ ⎥⎣ ⎦
 

There’s really not a whole lot to do in this problem other than just use the formula. 

 

( ) ( )

( )

5
22

1

5
2

3 2

1

5
2

1 5 6cos
1

2 1 5 6 sin
7 3 2
12 13
7 6
1.620993

avgf t t t dt

t t t

π

π
π

π

−

−

= − +
− −

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= −

= −

∫

 

 
You caught the substitution needed for the third term right? 
 
So, the average value of this function of the given interval is -1.620993. 

[Return to Problems] 
 

(b) ( ) ( ) ( )1 cos 2sin 2 zR z z −= e  on [ ],π π−  

Again, not much to do here other than use the formula.  Note that the integral will need the 
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following substitution. 

( )1 cos 2u z= −  

 
Here is the average value of this function, 

( ) ( ) ( )

( )

1 cos 2

1 cos 2

1 sin 2

1
2
0

z
avg

z

R z dz
π

π

π

π

π π
− −

−

−

=
− −

=

=

∫ e

e  

 
So, in this case the average function value is zero.  Do not get excited about getting zero here.  It 
will happen on occasion.  In fact, if you look at the graph of the function on this interval it’s not 
too hard to see that this is the correct answer. 

 
[Return to Problems] 

 
There is also a theorem that is related to the average function value. 
 
The Mean Value Theorem for Integrals 
If ( )f x  is a continuous function on [a,b] then there is a number c in [a,b] such that, 

 ( ) ( )( )
b

a
f x dx f c b a= −∫  

 
Note that this is very similar to the Mean Value Theorem that we saw in the Derivatives 
Applications chapter.  See the Proof of Various Integral Properties section of the Extras chapter 
for the proof. 
 
Note that one way to think of this theorem is the following.  First rewrite the result as, 

 ( ) ( )1 b

a
f x dx f c

b a
=

− ∫  
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and from this we can see that this theorem is telling us that there is a number a c b< <  such that 

( )avgf f c= .  Or, in other words, if ( )f x  is a continuous function then somewhere in [a,b] the 

function will take on its average value. 
 
Let’s take a quick look at an example using this theorem. 
 
Example 2  Determine the number c that satisfies the Mean Value Theorem for Integrals for the 
function ( ) 2 3 2f x x x= + +  on the interval [1,4] 
 
Solution 
First let’s notice that the function is a polynomial and so is continuous on the given interval.  This 
means that we can use the Mean Value Theorem.  So, let’s do that. 
 

 

( )( )

( )

4 2 2

1

4
3 2 3

1

3

3

3 2 3 2 4 1

1 3 2 3 3 2
3 2

99 3 9 6
2

70 3 9
2

x x dx c c

x x x c c

c c

c c

+ + = + + −

⎛ ⎞+ + = + +⎜ ⎟
⎝ ⎠

= + +

8
= + −

∫

 

 
This is a quadratic equation that we can solve.  Using the quadratic formula we get the following 
two solutions, 

 

3 67 2.593
2

3 67 5.593
2

c

c

− +
= =

− −
= = −

 

 
Clearly the second number is not in the interval and so that isn’t the one that we’re after.  The 
first however is in the interval and so that’s the number we want. 
 
Note that it is possible for both numbers to be in the interval so don’t expect only one to be in the 
interval. 
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 Area Between Curves 
In this section we are going to look at finding the area between two curves.  There are actually 
two cases that we are going to be looking at. 
 
In the first case we are want to determine the area between ( )y f x=  and ( )y g x=  on the 

interval [a,b].  We are also going to assume that ( ) ( )f x g x≥ .  Take a look at the following 

sketch to get an idea of what we’re initially going to look at. 

 
 
In the Area and Volume Formulas section of the Extras chapter we derived the following formula 
for the area in this case. 

 ( ) ( )
b

a
A f x g x dx= −∫  (1) 

The second case is almost identical to the first case.  Here we are going to determine the area 
between ( )x f y=  and ( )x g y=  on the interval [c,d] with ( ) ( )f y g y≥ . 
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In this case the formula is, 

 ( ) ( )
d

c
A f y g y dy= −∫  (2) 

 
Now (1) and (2) are perfectly serviceable formulas, however, it is sometimes easy to forget that 
these always require the first function to be the larger of the two functions.  So, instead of these 
formulas we will instead use the following “word” formulas to make sure that we remember that 
the formulas area always the “larger” function minus the “smaller” function. 
 
In the first case we will use, 

 
upper lower

,
function function

b

a

A dx a x b⎛ ⎞ ⎛ ⎞
= − ≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⌠
⎮
⌡

 (3)

 
In the second case we will use, 

 
right left

,
function function

d

c

A dy c y d⎛ ⎞ ⎛ ⎞
= − ≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⌠
⎮
⌡

 (4)

 
Using these formulas will always force us to think about what is going on with each problem and 
to make sure that we’ve got the correct order of functions when we go to use the formula. 
 
Let’s work an example. 
 

Example 1  Determine the area of the region enclosed by 2y x=  and y x= . 
 
Solution 
First of all, just what do we mean by “area enclosed by”.  This means that the region we’re 
interested in must have one of the two curves on every boundary of the region.  So, here is a 
graph of the two functions with the enclosed region shaded. 
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Note that we don’t take any part of the region to the right of the intersection point of these two 
graphs.  In this region there is no boundary on the right side and so is not part of the enclosed 
area.  Remember that one of the given functions must be on the each boundary of the enclosed 
region. 
 
Also from this graph it’s clear that the upper function will be dependent on the range of x’s that 
we use.  Because of this you should always sketch of a graph of the region.  Without a sketch it’s 
often easy to mistake which of the two functions is the larger.  In this case most would probably 
say that 2y x=  is the upper function and they would be right for the vast majority of the x’s.  
However, in this case it is the lower of the two functions. 
 
The limits of integration for this will be the intersection points of the two curves.  In this case it’s 
pretty easy to see that they will intersect at 0x =  and 1x =  so these are the limits of integration. 
 
So, the integral that we’ll need to compute to find the area is, 
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∫
 

 
Before moving on to the next example, there are a couple of important things to note.   
 
First, in almost all of these problems a graph is pretty much required.  Often the bounding region, 
which will give the limits of integration, is difficult to determine without a graph.   
 
Also, it can often be difficult to determine which of the functions is the upper function and with is 
the lower function without a graph.  This is especially true in cases like the last example where 
the answer to that question actually depended upon the range of x’s that we were using. 
 
Finally, unlike the area under a curve that we looked at in the previous chapter the area between 
two curves will always be positive.  If we get a negative number or zero we can be sure that 
we’ve made a mistake somewhere and will need to go back and find it. 
 
Note as well that sometimes instead of saying region enclosed by we will say region bounded by.  
They mean the same thing. 
 
Let’s work some more examples. 
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Example 2  Determine the area of the region bounded by 
2xy x −= e , 1y x= + , 2x = , and the 

y-axis. 
 
Solution 
In this case the last two pieces of information, 2x =  and the y-axis, tell us the right and left 
boundaries of the region.  Also, recall that the y-axis is given by the line 0x = .  Here is the graph 
with the enclosed region shaded in. 

 
 
Here, unlike the first example, the two curves don’t meet.  Instead we rely on two vertical lines to 
bound the left and right sides of the region as we noted above 
 
Here is the integral that will give the area. 
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Example 3  Determine the area of the region bounded by 22 10y x= + and 4 16y x= + . 
 
Solution 
In this case the intersection points (which we’ll need eventually) are not going to be easily 
identified from the graph so let’s go ahead and get them now.  Note that for most of these 
problems you’ll not be able to accurately identify the intersection points from the graph and so 
you’ll need to be able to determine them by hand.  In this case we can get the intersection points 
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by setting the two equations equal. 

 

( )( )

2

2

2 10 4 16
2 4 6 0

2 1 3 0

x x
x x

x x

+ = +

− − =

+ − =

 

 
So it looks like the two curves will intersect at 1x = −  and 3x = .  If we need them we can get 
the y values corresponding to each of these by plugging the values back into either of the 
equations.  We’ll leave it to you to verify that the coordinates of the two intersection points on the 
graph are (-1,12) and (3,28).   
 
Note as well that if you aren’t good at graphing knowing the intersection points can help in at 
least getting the graph started.  Here is a graph of the region. 

 
 
With the graph we can now identify the upper and lower function and so we can now find the 
enclosed area. 

 

( )3 2

1

3 2

1

3
3 2

1

upper lower
function function

4 16 2 10

2 4 6

2 2 6
3

64
3

b

a

A dx

x x dx

x x dx

x x x

−

−

−

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= + − +

= − + +

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

=

⌠
⎮
⌡

∫

∫  

 
Be careful with parenthesis in these problems.  One of the more common mistakes students make 
with these problems is to neglect parenthesis on the second term. 
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Example 4  Determine the area of the region bounded by 22 10y x= + , 4 16y x= + , 2x = −  
and 5x =  
 
Solution 
So, the functions used in this problem are identical to the functions from the first problem.  The 
difference is that we’ve extended the bounded region out from the intersection points.  Since 
these are the same functions we used in the previous example we won’t bother finding the 
intersection points again. 
 
Here is a graph of this region. 

 
 
Okay, we have a small problem here.  Our formula requires that one function always be the upper 
function and the other function always be the lower function and we clearly do not have that here.  
However, this actually isn’t the problem that it might at first appear to be.  There are three regions 
in which one function is always the upper function and the other is always the lower function.  
So, all that we need to do is find the area of each of the three regions, which we can do, and then 
add them all up. 
 
Here is the area. 
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Example 5  Determine the area of the region enclosed by siny x= , cosy x= , 
2

x π
= , and the 

y-axis. 
 
Solution 
First let’s get a graph of the region. 

 
 
So, we have another situation where we will need to do two integrals to get the area.  The 
intersection point will be where  
 sin cosx x=  

in the interval.  We’ll leave it to you to verify that this will be 
4

x π
= .  The area is then, 

 ( ) ( )

( )
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0 4
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0 4

cos sin sin cos

sin cos cos sin
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2 2 2 0.828427

A x x dx x x dx
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π π
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= − =

∫ ∫

 

 
We will need to be careful with this next example.   
 

Example 6  Determine the area of the region enclosed by 21 3
2

x y= −  and 1y x= − . 

Solution 
Don’t let the first equation get you upset.  We will have to deal with these kinds of equations 
occasionally so we’ll need to get used to dealing with them. 
 
As always, it will help if we have the intersection points for the two curves.  In this case we’ll get 
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the intersection points by solving the second equation for x and the setting them equal.  Here is 
that work, 

 

( )( )

2

2

2

11 3
2

2 2 6
0 2 8
0 4 2

y y

y y
y y
y y

+ = −

+ = −

= − −
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So, it looks like the two curves will intersect at 2y = −  and 4y =  or if we need the full 
coordinates they will be : (-1,-2) and (5,4). 
 
Here is a sketch of the two curves. 

 
 
Now, we will have a serious problem at this point if we aren’t careful.  To this point we’ve been 
using an upper function and a lower function.  To do that here notice that there are actually two 
portions of the region that will have different lower functions.  In the range [-2,-1] the parabola is 
actually both the upper and the lower function. 
 
To use the formula that we’ve been using to this point we need to solve the parabola for y.  This 
gives, 

 2 6y x= ± +  
where the “+” gives the upper portion of the parabola and the “-” gives the lower portion.   
 
Here is a sketch of the complete area with each region shaded that we’d need if we were going to 
use the first formula. 
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The integrals for the area would then be, 
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While these integrals aren’t terribly difficult they are more difficult than they need to be. 
 
Recall that there is another formula for determining the area.  It is, 

 
right left

,
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⌠
⎮
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and in our case we do have one function that is always on the left and the other is always on the 
right.  So, in this case this is definitely the way to go.  Note that we will need to rewrite the 
equation of the line since it will need to be in the form ( )x f y=  but that is easy enough to do.  

Here is the graph for using this formula. 
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The area is, 
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This is the same that we got using the first formula and this was definitely easier than the first 
method. 
 
So, in this last example we’ve seen a case where we could use either formula to find the area.  
However, the second was definitely easier.   
 
Students often come into a calculus class with the idea that the only easy way to work with 
functions is to use them in the form ( )y f x= .  However, as we’ve seen in this previous 

example there are definitely times when it will be easier to work with functions in the form 

( )x f y= .  In fact, there are going to be occasions when this will be the only way in which a 

problem can be worked so make sure that you can deal with functions in this form. 
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Let’s take a look at one more example to make sure we can deal with functions in this form. 
 

Example 7  Determine the area of the region bounded by 2 10x y= − +  and ( )22x y= − . 
Solution 
First, we will need intersection points. 
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The intersection points are 1y = −  and 3y = .  Here is a sketch of the region. 

 
This is definitely a region where the second area formula will be easier.  If we used the first 
formula there would be three different regions that we’d have to look at. 
 
The area in this case is, 

 
( )

3 22

1

3 2

1

3
3 2

1

right left
function function

10 2

2 4 6

2 42 6
3 3

d

c

A dy

y y dy

y y dy

y y y

−

−

−

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= − + − −

= − + +

6⎛ ⎞= − + + =⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

∫

∫
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 Volumes of Solids of Revolution / Method of Rings 
In this section we will start looking at the volume of a solid of revolution.  We should first define 
just what a solid of revolution is.  To get a solid of revolution we start out with a function, 

( )y f x= , on an interval [a,b]. 

 
We then rotate this curve about a given axis to get the surface of the solid of revolution.  For 
purposes of this discussion let’s rotate the curve about the x-axis, although it could be any vertical 
or horizontal axis.  Doing this for the curve above gives the following three dimensional region. 

 
What we want to do over the course of the next two sections is to determine the volume of this 
object.   
 
In the final the Area and Volume Formulas section of the Extras chapter we derived the following 
formulas for the volume of this solid. 
 


