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 Proof of Trig Limits 
In this section we’re going to provide the proof of the two limits that are used in the derivation of 
the derivative of sine and cosine in the Derivatives of Trig Functions section of the Derivatives 
chapter.  

 

Proof of : 
0

sinlim 1
θ

θ
θ→

=  

This proof of this limit uses the Squeeze Theorem.  However, getting things set up to use the 
Squeeze Theorem can be a somewhat complex geometric argument that can be difficult to follow 
so we’ll try to take it fairly slow.   
 
Let’s start by assuming that 20 πθ≤ ≤ .  Since we are proving a limit that has 0θ →  it’s okay to 

assume that θ  is not too large (i.e. 2
πθ ≤ ).  Also, by assuming that θ  is positive we’re actually 

going to first prove that the above limit is true if it is the right-hand limit.  As you’ll see if we can 
prove this then the proof of the limit will be easy. 
 
So, now that we’ve got our assumption on θ  taken care of let’s start off with the unit circle 
circumscribed by an octagon with a small slice marked out as shown below. 

 
Points A and C are the midpoints of their respective sides on the octagon and are in fact tangent to 
the circle at that point.  We’ll call the point where these two sides meet B. 
 
From this figure we can see that the circumference of the circle is less than the length of the 
octagon.  This also means that if we look at the slice of the figure marked out above then the 
length of the portion of the circle included in the slice must be less than the length of the portion 
of the octagon included in the slice.   
 
Because we’re going to be doing most of our work on just the slice of the figure let’s strip that out 
and look at just it.  Here is a sketch of just the slice. 
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Now denote the portion of the circle by arc AC  and the lengths of the two portion of the octagon 
shown by AB  and BC .  Then by the observation about lengths we made above we must have, 

 arc AC AB BC< +  (4)
 
Next, extend the lines AB and OC as shown below and call the point that they meet D.  The 
triangle now formed by AOD is a right triangle.  All this is shown in the figure below. 

 
 
The triangle BCD is a right triangle with hypotenuse BD and so we know BC BD< .  Also 

notice that AB BD AD+ = .  If we use these two facts in (1) we get, 

 

arc AC AB BC

AB BD

AD

< +

< +

=

 (5)

 
Next, as noted already the triangle AOD is a right triangle and so we can use a little right triangle 
trigonometry to write tanAD AO θ= .  Also note that 1AO =  since it is nothing more than 

the radius of the unit circle.  Using this information in (2) gives, 

 

arc

tan
tan

AC AD

AO θ
θ

<

<

=

 (6)
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The next thing that we need to recall is that the length of a portion of a circle is given by the 
radius of the circle times the angle that traces out the portion of the circle we’re trying to 
measure.  For our portion this means that, 
 arc AC AO θ θ= =  
 
So, putting this into (3) we see that, 

 sinarc tan
cos

AC θθ θ
θ

= < =  

or, if we do a little rearranging we get, 

 sincos θθ
θ

<  (7)

 
We’ll be coming back to (4) in a bit.  Let’s now add in a couple more lines into our figure above.  
Let’s connect A and C with a line and drop a line straight down from C until it intersects AO at a 
right angle and let’s call the intersection point E.  This is all show in the figure below. 

 
 
Okay, the first thing to notice here is that, 
 arcCE AC AC< <  (8)
 
Also note that triangle EOC is a right triangle with a hypotenuse of 1CO = .  Using some right 

triangle trig we can see that, 
 sin sinCE CO θ θ= =  
 
Plugging this into (5) and recalling that arc AC θ=  we get, 
 sin arcCE ACθ θ= < =  
and with a little rewriting we get, 

 sin 1θ
θ

<  (9)
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Okay, we’re almost done here.  Putting (4) and (6) together we see that, 

 sincos 1θθ
θ

< <  

provided 20 πθ≤ ≤ .  Let’s also note that, 

 
0 0

lim cos 1 lim1 1
θ θ

θ
→ →

= =  

 
We are now set up to use the Squeeze Theorem.  The only issue that we need to worry about is 
that we are staying to the right of 0θ =  in our assumptions and so the best that the Squeeze 
Theorem will tell us is, 

 
0

sinlim 1
θ

θ
θ+→

=  

 
So, we know that the limit is true if we are only working with a right-hand limit.  However we 
know that sinθ  is an odd function and so, 

 ( )sin sin sinθ θ θ
θ θ θ
− −

= =
− −

 

 
In other words, if we approach zero from the left (i.e. negative θ ’s) then we’ll get the same 
values in the function as if we’d approached zero from the right (i.e. positive θ ’s) and so,  

0

sinlim 1
θ

θ
θ−→

=  

 
We have now shown that the two one-sided limits are the same and so we must also have, 

 
0

sinlim 1
θ

θ
θ→

=  

 
 
 
That was a somewhat long proof and if you’re not really good at geometric arguments it can be 
kind of daunting and confusing.  Nicely, the second limit is very simple to prove, provided 
you’ve already proved the first limit. 
 

 

Proof of :  
0

cos 1lim 0
θ

θ
θ→

−
=  

We’ll start by doing the following, 
  

 ( )( )
( ) ( )

2

0 0 0

cos 1 cos 1cos 1 cos 1lim lim lim
cos 1 cos 1θ θ θ

θ θθ θ
θ θ θ θ θ→ → →

− +− −
= =

+ +
 (10)

 
Now, let’s recall that, 
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 2 2 2 2cos sin 1 cos 1 sinθ θ θ θ+ = ⇒ − = −  
 
Using this in (7) gives us, 

 

( )
2

0 0

0

0 0

cos 1 sinlim lim
cos 1

sin sinlim
cos 1

sin sinlim lim
cos 1

θ θ

θ

θ θ

θ θ
θ θ θ

θ θ
θ θ

θ θ
θ θ

→ →

→

→ →

− −
=

+

−
=

+
−

=
+

 

 
At this point, because we just proved the first limit and the second can be taken directly we’re 
pretty much done.  All we need to do is take the limits. 
 

 ( )( )
0 0 0

cos 1 sin sinlim lim lim 1 0 0
cos 1θ θ θ

θ θ θ
θ θ θ→ → →

− −
= = =

+
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 Proofs of Derivative Applications Facts/Formulas 
In this section we’ll be proving some of the facts and/or theorems from the Applications of 
Derivatives chapter.  Not all of the facts and/or theorems will be proved here. 
 

 
 
Fermat’s Theorem  
If ( )f x  has a relative extrema at x c=  and ( )f c′  exists then x c=  is a critical point of 

( )f x .  In fact, it will be a critical point such that ( ) 0f c′ = . 

 
Proof 
This is a fairly simple proof.  We’ll assume that ( )f x  has a relative maximum to do the proof.  

The proof for a relative minimum is nearly identical.  So, if we assume that we have a relative 
maximum at x c=  then we know that ( ) ( )f c f x≥  for all x that are sufficiently close to x c= .  

In particular for all h that are sufficiently close to zero (positive or negative) we must have, 
 ( ) ( )f c f c h≥ +  
or, with a little rewrite we must have, 
 ( ) ( ) 0f c h f c+ − ≤  (1)
 
Now, at this point assume that 0h >  and divide both sides of (1) by h.  This gives, 

 ( ) ( ) 0
f c h f c

h
+ −

≤  

Because we’re assuming that 0h >  we can now take the right-hand limit of both sides of this. 

 ( ) ( )
0 0

lim lim 0 0
h h

f c h f c
h+ +→ →

+ −
≤ =  

 
We are also assuming that ( )f c′  exists and recall that if a normal limit exists then it must be 

equal to both one-sided limits.  We can then say that, 

 ( ) ( ) ( ) ( ) ( )
0 0

lim lim 0
h h

f c h f c f c h f c
f c

h h+→ →

+ − + −
′ = = ≤  

 
If we put this together we have now shown that ( ) 0f c′ ≤ . 

 
Okay, now let’s turn things around and assume that 0h <  and divide both sides of (1) by h.  This 
gives, 

 ( ) ( ) 0
f c h f c

h
+ −

≥  

Remember that because we’re assuming 0h <  we’ll need to switch the inequality when we 
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divide by a negative number.  We can now do a similar argument as above to get that, 

 ( ) ( ) ( ) ( ) ( )
0 0 0

lim lim lim 0 0
h h h

f c h f c f c h f c
f c

h h− −→ → →

+ − + −
′ = = ≥ =  

 
The difference here is that this time we’re going to be looking at the left-hand limit since we’re 
assuming that 0h < .  This argument shows that ( ) 0f c′ ≥ . 

 
We’ve now shown that ( ) 0f c′ ≤  and ( ) 0f c′ ≥ .  Then only way both of these can be true at 

the same time is to have ( ) 0f c′ =  and this in turn means that x c=  must be a critical point. 

 
As noted above, if we assume that ( )f x  has a relative minimum then the proof is nearly 

identical and so isn’t shown here.  The main differences are simply some inequalities need to be 
switched. 

 
 
 

 
 
Fact, The Shape of a Graph, Part I 
1. If ( ) 0f x′ >  for every x on some interval I, then ( )f x  is increasing on the interval. 

2. If ( ) 0f x′ <  for every x on some interval I, then ( )f x  is decreasing on the interval. 

3. If ( ) 0f x′ =  for every x on some interval I, then ( )f x  is constant on the interval. 
 
The proof of this fact uses the Mean Value Theorem which, if you’re following along in my notes 
has actually not been covered yet.  The Mean Value Theorem can be covered at any time and for 
whatever the reason I decided to put where it is.  Before reading through the proof of this fact you 
should take a quick look at the Mean Value Theorem section.  You really just need the conclusion 
of the Mean Value Theorem for this proof however. 
 
Proof of 1 
Let 1x  and 2x  be in I and suppose that 1 2x x< .  Now, using the Mean Value Theorem on 

[ ]1 2,x x  means there is a number c such that 1 2x c x< <  and, 

 ( ) ( ) ( )( )2 1 2 1f x f x f c x x′− = −   

 
Because 1 2x c x< <  we know that c must also be in I and so we know that ( ) 0f c′ >  we also  

know that 2 1 0x x− > .  So, this means that we have, 

 ( ) ( )2 1 0f x f x− >   
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Rewriting this gives, 
 ( ) ( )1 2f x f x<   

and so, by definition, since 1x  and 2x  were two arbitrary numbers in I, ( )f x must be increasing 

on I. 
 

 
 
Proof of 2 
This proof is nearly identical to the previous part. 
 
Let 1x  and 2x  be in I and suppose that 1 2x x< .  Now, using the Mean Value Theorem on 

[ ]1 2,x x  means there is a number c such that 1 2x c x< <  and, 

 ( ) ( ) ( )( )2 1 2 1f x f x f c x x′− = −   

 
Because 1 2x c x< <  we know that c must also be in I and so we know that ( ) 0f c′ <  we also  

know that 2 1 0x x− > .  So, this means that we have, 

 ( ) ( )2 1 0f x f x− <   

 
Rewriting this gives, 

 ( ) ( )1 2f x f x>   

and so, by definition, since 1x  and 2x  were two arbitrary numbers in I, ( )f x must be decreasing 

on I. 
 

 
 
Proof of 3 
Again, this proof is nearly identical to the previous two parts, but in this case is actually 
somewhat easier. 
 
Let 1x  and 2x  be in I.  Now, using the Mean Value Theorem on [ ]1 2,x x  there is a number c such 

that c is between 1x  and 2x  and, 

 ( ) ( ) ( )( )2 1 2 1f x f x f c x x′− = −   

 
Note that for this part we didn’t need to assume that 1 2x x<  and so all we know is that c is 

between  1x  and 2x   and so, more importantly, c is also in I. and this means that ( ) 0f c′ = .  So, 

this means that we have, 
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 ( ) ( )2 1 0f x f x− =   

 
Rewriting this gives, 

 ( ) ( )1 2f x f x=   

and so, since 1x  and 2x  were two arbitrary numbers in I, ( )f x must be constant on I. 

 
 
 

 
 
Fact, The Shape of a Graph, Part II 
Given the function ( )f x  then, 

1. If ( ) 0f x′′ > for all x in some interval I then ( )f x  is concave up on I. 
 

2. If ( ) 0f x′′ < for all x in some interval I then ( )f x  is concave up on I. 
 
The proof of this fact uses the Mean Value Theorem which, if you’re following along in my notes 
has actually not been covered yet.  The Mean Value Theorem can be covered at any time and for 
whatever the reason I decided to put it after the section this fact is in.  Before reading through the 
proof of this fact you should take a quick look at the Mean Value Theorem section.  You really 
just need the conclusion of the Mean Value Theorem for this proof however. 
 
Proof of 1 
Let a be any number in the interval I.  The tangent line to ( )f x  at x a=  is, 

 ( ) ( )( )y f a f a x a′= + −   

 
To show that ( )f x  is concave up on I then we need to show that for any x, x a≠ , in I that, 

 ( ) ( ) ( )( )f x f a f a x a′> + −   

or in other words, the tangent line is always below the graph of ( )f x  on I.   Note that we require 

x a≠  because at that point we know that ( ) ( )f x f a=  since we are talking about the tangent 

line. 
 
Let’s start the proof off by first assuming that x a> .  Using the Mean Value Theorem on [ ],a x  

means there is a number c such that a c x< <  and, 
 ( ) ( ) ( )( )f x f a f c x a′− = −  

 
With some rewriting this is, 
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 ( ) ( ) ( )( )f x f a f c x a′= + −  (2) 

  
Next, let’s use the fact that ( ) 0f x′′ >  for every x on I.  This means that the first derivative, 

( )f x′ , must be increasing (because its derivative, ( )f x′′ , is positive).  Now, we know from the 

Mean Value Theorem that a c<  and so because ( )f x′  is increasing we must have, 

 ( ) ( )f a f c′ ′<  (3) 

  
Recall as well that we are assuming x a>  and so 0x a− > .  If we now multiply (3) by x a−  
(which is positive and so the inequality stays the same) we get, 

 ( )( ) ( )( )f a x a f c x a′ ′− < −   

 
Next, add ( )f a  to both sides of this to get, 

 ( ) ( )( ) ( ) ( )( )f a f a x a f a f c x a′ ′+ − < + −  

 
However, by (2), the right side of this is nothing more than ( )f x  and so we have, 

 ( ) ( )( ) ( )f a f a x a f x′+ − <  

but this is exactly what we wanted to show. 
 
So, provided x a>  the tangent line is in fact below the graph of ( )f x . 

 
We now need to assume x a< .  Using the Mean Value Theorem on [ ],x a  means there is a 

number c such that x c a< <  and, 
 ( ) ( ) ( )( )f a f x f c a x′− = −  

 
If we multiply both sides of this by –1 and then adding ( )f a  to both sides and we again arise at 

(2).  
 
Now, from the Mean Value Theorem we know that c a<  and because ( ) 0f x′′ >  for every x on 

I we know that the derivative is still increasing and so we have, 
 ( ) ( )f c f a′ ′<   

 
Let’s now multiply this by x a− , which is now a negative number since x a< .  This gives, 

 ( )( ) ( )( )f c x a f a x a′ ′− > −  

 
Notice that we had to switch the direction of the inequality since we were multiplying by a 
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negative number.  If we now add ( )f a  to both sides of this and then substitute (2) into the 

results we arrive at, 

 
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )
f a f c x a f a f a x a

f x f a f a x a

′ ′+ − > + −

′> + −
 

 
So, again we’ve shown that the tangent line is always below the graph of ( )f x .  

 
We’ve now shown that if x is any number in I, with x a≠  the tangent lines are always below the 
graph of ( )f x  on I and so ( )f x  is concave up on I.  

 
 
 
Proof of 2 
This proof is nearly identical to the proof of 1 and since that proof is fairly long we’re going to 
just get things started and then leave the rest of it to you to go through. 
 
Let a be any number in I .  To show that ( )f x  is concave down we need to show that for any x 

in I, x a≠ , that the tangent line is always above the graph of ( )f x  or,   

 ( ) ( ) ( )( )f x f a f a x a′< + −   

  
From this point on the proof is almost identical to the proof of 1 except that you’ll need to use the 
fact that the derivative in this case is decreasing since ( ) 0f x′′ < .  We’ll leave it to you to fill in 

the details of this proof. 
 

 
 

 
 
Second Derivative Test 
Suppose that x c=  is a critical point of ( )f c′  such that ( ) 0f c′ =  and that ( )f x′′  is 

continuous in a region around x c= .  Then, 
1. If ( ) 0f c′′ <  then x c=  is a relative maximum. 

2. If ( ) 0f c′′ >  then x c=  is a relative minimum. 

3. If ( ) 0f c′′ =  then x c=  can be a relative maximum, relative minimum or neither. 
 
The proof of this fact uses the Mean Value Theorem which, if you’re following along in my notes 
has actually not been covered yet.  The Mean Value Theorem can be covered at any time and for 
whatever the reason I decided to put it after the section this fact is in.  Before reading through the 
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proof of this fact you should take a quick look at the Mean Value Theorem section.  You really 
just need the conclusion of the Mean Value Theorem for this proof however. 
 
Proof of 1 
First since we are assuming that ( )f x′′  is continuous in a region around x c=  then we can 

assume that in fact  ( ) 0f c′′ <  is also true in some open region, say ( ),a b  around x c= , i.e. 

a c b< < . 
 
Now let x be any number such that a x c< < , we’re going to use the Mean Value Theorem on 

[ ],x c .  However, instead of using it on the function itself we’re going to use it on the first 

derivative.  So, the Mean Value Theorem tells us that there is a number x d c< <  such that,  
 ( ) ( ) ( )( )f c f x f d c x′ ′ ′′− = −  

  
Now, because a x d c< < <  we know that ( ) 0f d′′ <  and we also know that 0c x− >  so we 

then get that, 

( ) ( ) 0f c f x′ ′− <  

 
However, we also assumed that ( ) 0f c′ =  and so we have, 

 ( ) ( )0 0f x f x′ ′− < ⇒ >  

 
Or, in other words to the left of x c=  the function is increasing. 
 
Let’s now turn things around and let x be any number such that c x b< <  and use the Mean 
Value Theorem on [ ],c x  and the first derivative.  The Mean Value Theorem tells us that there is 

a number c d x< <  such that,  
 ( ) ( ) ( )( )f x f c f d x c′ ′ ′′− = −  

  
Now, because c d x b< < <  we know that ( ) 0f d′′ <  and we also know that 0x c− >  so we 

then get that, 

( ) ( ) 0f x f c′ ′− <  

 
Again use the fact that we also assumed that ( ) 0f c′ =  to get, 

 ( ) 0f x′ <  

 
We now know that to the right of x c=  the function is decreasing. 
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So, to the left of x c=  the function is increasing and to the right of x c=  the function is 
decreasing so by the first derivative test this means that x c=  must be a relative maximum. 

 
 
 
Proof of 2 
This proof is nearly identical to the proof of 1 and since that proof is somewhat long we’re going 
to leave the proof to you to do.  In this case the only difference is that now we are going to 
assume that ( ) 0f x′′ <  and that will give us the opposite signs of the first derivative on either 

side of x c=  which gives us the conclusion we were after.  We’ll leave it to you to fill in all the 
details of this. 

 
 
 
Proof of 3 
There isn’t really anything to prove here.  All this statement says is that any of the three cases are 
possible and to “prove” this all one needs to do is provide an example of each of the three cases.  
This was done in The Shape of a Graph, Part II section where this test was presented so we’ll 
leave it to you to go back to that section to see those graphs to verify that all three possibilities 
really can happen. 

 
 
 

 
 
Rolle’s Theorem  
Suppose ( )f x  is a function that satisfies both of the following. 

1. ( )f x  is continuous on the closed interval [a,b]. 

2. ( )f x  is differentiable on the open interval (a,b). 

3. ( ) ( )f a f b=   
 

Then there is a number c such that a c b< <  and ( ) 0f c′ = .  Or, in other words ( )f x  has a 

critical point in (a,b). 
 
Proof 
We’ll need to do this with 3 cases. 
 
Case 1 : ( )f x k=  on [a,b] where k is a constant. 

In this case ( ) 0f x′ =  for all x in [a,b] and so we can take c to be any number in [a,b]. 
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Case 2 : There is some number d in (a,b) such that ( ) ( )f d f a> . 

Because ( )f x  is continuous on [a,b] by the Extreme Value Theorem we know that ( )f x  will 

have a maximum somewhere in [a,b].  Also, because ( ) ( )f a f b=  and ( ) ( )f d f a>  we 

know that in fact the maximum value will have to occur at some c that is in the open interval 
(a,b), or a c b< < .  Because c occurs in the interior of the interval this means that ( )f x  will 

actually have a relative maximum at x c=  and by the second hypothesis above we also know 
that ( )f c′  exists.  Finally, by Fermat’s Theorem we then know that in fact x c=  must be a 

critical point and because we know that  ( )f c′  exists we must have ( ) 0f c′ =  (as opposed to 

( )f c′  not existing…). 

 
Case 3 : There is some number d in (a,b) such that ( ) ( )f d f a< . 

This is nearly identical to Case 2 so we won’t put in quite as much detail.  By the Extreme Value 
Theorem ( )f x  will have minimum in [a,b] and because ( ) ( )f a f b=   and ( ) ( )f d f a<  we 

know that the minimum must occur at x c=  where a c b< < .  Finally, by Fermat’s Theorem we 
know that ( ) 0f c′ = . 

 
 
 

 
 
The Mean Value Theorem  
Suppose ( )f x  is a function that satisfies both of the following. 

1. ( )f x  is continuous on the closed interval [a,b]. 

2. ( )f x  is differentiable on the open interval (a,b). 
 
Then there is a number c such that a < c < b and 

 ( ) ( ) ( )f b f a
f c

b a
−

′ =
−

 

Or, 

( ) ( ) ( )( )f b f a f c b a′− = −  
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Proof 
For illustration purposes let’s suppose that the graph of ( )f x  is, 

 
 
Note of course that it may not look like this, but we just need a quick sketch to make it easier to 
see what we’re talking about here. 
 
The first thing that we need is the equation of the secant line that goes through the two points A 
and B as shown above.  This is, 

 ( ) ( ) ( ) ( )f b f a
y f a x a

b a
−

= + −
−

 

 
Let’s now define a new function, ( )g x , as to be the difference between ( )f x  and the equation 

of the secant line or, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f b f a f b f a
g x f x f a x a f x f a x a

b a b a
− −⎛ ⎞

= − + − = − − −⎜ ⎟− −⎝ ⎠
 

 
Next, let’s notice that because ( )g x  is the sum of ( )f x , which is assumed to be continuous on 

[a,b], and a linear polynomial, which we know to be continuous everywhere, we know that ( )g x  

must also be continuous on [a,b]. 
 
Also, we can see that ( )g x  must be differentiable on (a,b) because it is the sum of ( )f x , which 

is assumed to be differentiable on (a,b), and a linear polynomial, which we know to be 
differentiable.   
 
We could also have just computed the derivative as follows, 

( ) ( ) ( ) ( )f b f a
g x f x

b a
−

′ ′= −
−
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at which point we can see that it exists on (a,b) because we assumed that ( )f x′  exists on (a,b) 

and the last term is just a constant. 
 
Finally, we have, 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0

0

f b f a
g a f a f a a a f a f a

b a

f b f a
g b f b f a b a f b f a f b f a

b a

−
= − − − = − =

−

−
= − − − = − − − =

−

 

 
In other words, ( )g x  satisfies the three conditions of Rolle’s Theorem and so we know that 

there must be a number c such that a c b< <  and that, 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0
f b f a f b f a

g c f c f c
b a b a

− −
′ ′ ′= = − ⇒ =

− −
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 Proof of Various Integral Facts/Formulas/Properties 
In this section we’ve got the proof of several of the properties we saw in the Integrals Chapter as 
well as a couple from the Applications of Integrals Chapter. 
 

 
 

Proof of : ( ) ( )k f x dx k f x dx=∫ ∫  where k is any number.  

This is a very simple proof.  Suppose that ( )F x  is an anti-derivative of ( )f x , i.e. 

( ) ( )F x f x′ = .  Then by the basic properties of derivatives we also have that, 

( )( ) ( ) ( )k F x k F x k f x′ ′= =  

and so ( )k F x  is an anti-derivative of ( )k f x , i.e. ( )( ) ( )k F x k f x′ = .  In other words, 

 ( ) ( ) ( )k f x dx k F x c k f x dx= + =∫ ∫  

 
 
 

 
 

Proof of : ( ) ( ) ( ) ( )f x g x dx f x dx g x dx± = ±∫ ∫ ∫   

This is also a very simple proof  Suppose that ( )F x  is an anti-derivative of ( )f x  and that 

( )G x  is an anti-derivative of ( )g x .  So we have that ( ) ( )F x f x′ =  and ( ) ( )G x g x′ = .  

Basic properties of derivatives we also tell us that 

( ) ( )( ) ( ) ( ) ( ) ( )F x G x F x G x f x g x′ ′ ′± = ± = ±  

and so ( ) ( )F x G x+  is an anti-derivative of ( ) ( )f x g x+  and ( ) ( )F x G x−  is an anti-

derivative of ( ) ( )f x g x− .    In other words, 

 ( ) ( ) ( ) ( ) ( ) ( )f x g x dx F x G x c f x dx g x dx± = ± + = ±∫ ∫ ∫  
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Proof of : ( ) ( )
b a

a b
f x dx f x dx= −∫ ∫   

From the definition of the definite integral we have, 

 ( ) ( )*

1
lim

nb

ia n i

b af x dx f x x x
n→∞

=

−
= Δ Δ =∑∫  

  
and we also have, 

 ( ) ( )*

1

lim
na

ib n i

a bf x dx f x x x
n→∞

=

−
= Δ Δ =∑∫  

 
Therefore, 

 

( ) ( )

( ) ( )

( )

( ) ( )

*

1

*

1

*

1

*

1

lim

lim

lim

lim

nb

ia n i

n

in i

n

in i

n a

i bn i

b af x dx f x
n
a b

f x
n

a bf x
n

a bf x f x dx
n

→∞
=

→∞
=

→∞
=

→∞
=

−
=

− −
=

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

−
= − = −

∑∫

∑

∑

∑ ∫

 

 
 
 

 
 

Proof of : ( ) 0
a

a
f x dx =∫   

From the definition of the definite integral we have, 

 

( ) ( )

( )( )

*

1

*

1

lim 0

lim 0

lim 0

0

na

ia n i

n

in i

n

a af x dx f x x x
n

f x

→∞
=

→∞
=

→∞

−
= Δ Δ = =

=

=

=

∑∫

∑  
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Proof of : ( ) ( )
b b

a a
cf x dx c f x dx=∫ ∫   

From the definition of the definite integral we have, 

 

( ) ( )

( )

( )

( )

*

1

*

1

*

1

lim

lim

lim

nb

ia n i
n

in i

n

in i

b

a

c f x dx c f x x

c f x x

c f x x

c f x dx

→∞
=

→∞
=

→∞
=

= Δ

= Δ

= Δ

=

∑∫

∑

∑

∫

 

 
Remember that we can pull constants out of summations and out of limits.  

 
 
 

 
 

Proof of : ( ) ( ) ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx± = ±∫ ∫ ∫   

First we’ll prove the formula for “+”.  From the definition of the definite integral we have, 

 

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

* *

1

* *

1 1

* *

1 1

lim

lim

lim lim

nb

i ia n i

n n

i in i i

n n

i in ni i
b b

a a

f x g x dx f x g x x

f x x g x x

f x x g x x

f x dx g x dx

→∞
=

→∞
= =

→∞ →∞
= =

+ = + Δ

⎛ ⎞
= Δ + Δ⎜ ⎟

⎝ ⎠

= Δ + Δ

= +

∑∫

∑ ∑

∑ ∑

∫ ∫

 

 
To prove the formula for “-” we can either redo the above work with a minus sign instead of a 
plus sign or we can use the fact that we now know this is true with a plus and using the properties 
proved above as follows. 

 

( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( )

b b

a a

b b

a a

b b

a a

f x g x dx f x g x dx

f x dx g x dx

f x dx g x dx

− = + −

= + −

= −

∫ ∫

∫ ∫

∫ ∫
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Proof of : ( )
b

a
c dx c b a= −∫ , c is any number.  

If we define ( )f x c=  then from the definition of the definite integral we have, 

 

( )

( )

( )

( )
( )

*

1

1

lim

lim

lim

lim

b b

a a

n

in i

n

n i

n

n

c dx f x dx

b af x x x
n

b ac
n

b acn
n

c b a

c b a

→∞
=

→∞
=

→∞

→∞

=

−
= Δ Δ =

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

−
=

= −

= −

∫ ∫

∑

∑  

 
 
 

 
 

Proof of : If ( ) 0f x ≥  for a x b≤ ≤  then ( ) 0
b

a
f x dx ≥∫ . 

From the definition of the definite integral we have, 

 ( ) ( )*

1
lim

nb

ia n i

b af x dx f x x x
n→∞

=

−
= Δ Δ =∑∫  

 
Now, by assumption ( ) 0f x ≥  and we also have 0xΔ >  and so we know that  

 ( )*

1
0

n

i
i

f x x
=

Δ ≥∑  

So, from the basic properties of limits we then have, 

 ( )*

1

lim lim 0 0
n

in ni

f x x
→∞ →∞

=

Δ ≥ =∑  

 
But the left side is exactly the definition of the integral and so we have, 

 ( ) ( )*

1
lim 0

nb

ia n i
f x dx f x x

→∞
=

= Δ ≥∑∫  
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Proof of : If ( ) ( )f x g x≥  for a x b≤ ≤ then ( ) ( )
b b

a a
f x dx g x dx≥∫ ∫ . 

Since we have ( ) ( )f x g x≥  then we know that ( ) ( ) 0f x g x− ≥ on a x b≤ ≤  and so by 

Property 8  proved above we know that, 

 ( ) ( ) 0
b

a
f x g x dx− ≥∫  

 
We also know from Property 4 that, 

 ( ) ( ) ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx− = −∫ ∫ ∫  

 
So, we then have, 

 
( ) ( )

( ) ( )

0
b b

a a

b b

a a

f x dx g x dx

f x dx g x dx

− ≥

≥

∫ ∫

∫ ∫
 

 
 
 

 
 

Proof of : If ( )m f x M≤ ≤  for a x b≤ ≤  then ( ) ( ) ( )
b

a
m b a f x dx M b a− ≤ ≤ −∫ . 

Give ( )m f x M≤ ≤  we can use Property 9 on each inequality to write, 

 ( )
b b b

a a a
m dx f x dx M dx≤ ≤∫ ∫ ∫  

 
Then by Property 7 on the left and right integral to get, 

 ( ) ( ) ( )
b

a
m b a f x dx M b a− ≤ ≤ −∫  

 
 
 

 
 

Proof of : ( ) ( )
b b

a a
f x dx f x dx≤∫ ∫  

First let’s note that we can say the following about the function and the absolute value, 

 ( ) ( ) ( )f x f x f x− ≤ ≤  
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If we now use Property 9 on each inequality we get, 

 ( ) ( ) ( )
b b b

a a a
f x dx f x dx f x dx− ≤ ≤∫ ∫ ∫  

 
We know that we can factor the minus sign out of the left integral to get, 

 ( ) ( ) ( )
b b b

a a a
f x dx f x dx f x dx− ≤ ≤∫ ∫ ∫  

 
Finally, recall that if p b≤  then b p b− ≤ ≤  and of course this works in reverse as well so we 

then must have, 

 ( ) ( )
b b

a a
f x dx f x dx≤∫ ∫  

 
 
 

 
 
Fundamental Theorem of Calculus, Part I 
If ( )f x  is continuous on [a,b] then, 

 ( ) ( )
x

a
g x f t dt= ∫  

is continuous on [a,b] and it is differentiable on ( ),a b  and that, 

 ( ) ( )g x f x′ =  
 
Proof   
Suppose that x and x h+  are in ( ),a b .  We then have, 

 ( ) ( ) ( ) ( )
x h x

a a
g x h g x f t dt f t dt

+
+ − = −∫ ∫  

 
Now, using Property 5 of the Integral Properties we can rewrite the first integral and then do a 
little simplification as follows. 

 
( ) ( ) ( ) ( )( ) ( )

( )

x x h x

a x a

x h

x

g x h g x f t dt f t dt f t dt

f t dt

+

+

+ − = + −

=

∫ ∫ ∫

∫
 

 
Finally assume that 0h ≠  and we get, 
  

 
( ) ( ) ( )1 x h

x

g x h g x
f t dt

h h
++ −

= ∫  (1) 
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Let’s now assume that 0h >  and since we are still assuming that x h+  are in ( ),a b  we know 

that  ( )f x  is continuous on [ ],x x h+  and so be the Extreme Value Theorem we know that 

there are numbers c and d in [ ],x x h+  so that ( )f c m=  is the absolute minimum of ( )f x  in 

[ ],x x h+  and that ( )f d M=  is the absolute maximum of ( )f x  in [ ],x x h+ .  

 
So, by Property 10 of the Integral Properties we then know that we have, 

 ( )
x h

x
mh f t dt Mh

+
≤ ≤∫  

 
Or, 

 ( ) ( ) ( )
x h

x
f c h f t dt f d h

+
≤ ≤∫  

  
Now divide both sides of this by h to get, 

 ( ) ( ) ( )1 x h

x
f c f t dt f d

h
+

≤ ≤∫  

 and then use (1) to get, 
   

 ( ) ( ) ( ) ( )g x h g x
f c f d

h
+ −

≤ ≤  (2) 

 
Next, if 0h <  we can go through the same argument above except we’ll be working on 

[ ],x h x+  to arrive at exactly the same inequality above.  In other words, (2) is true provided 

0h ≠ . 
 
Now, if we take 0h →  we also have c x→  and d x→  because both c and d are between x and 
x h+ .  This means that we have the following two limits. 
 
 ( ) ( ) ( ) ( ) ( ) ( )

0 0
lim lim lim lim
h c x h d x

f c f c f x f d f d f x
→ → → →

= = = =  

 
The Squeeze Theorem then tells us that, 
  

 
( ) ( ) ( )

0
lim
h

g x h g x
f x

h→

+ −
=  (3) 

 
but the left side of this is exactly the definition of the derivative of ( )g x  and so we get that, 

 ( ) ( )g x f x′ =  
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So, we’ve shown that ( )g x  is differentiable on ( ),a b . 

 
Now, the Theorem at the end of the Definition of the Derivative section tells us that ( )g x  is also 

continuous on ( ),a b .   Finally, if we take x a=  or x b=  we can go through a similar argument 

we used to get  (3) using one-sided limits to get the same result and so the theorem at the end of 
the Definition of the Derivative section will also tell us that ( )g x  is continuous at x a=  or 

x b=  and so in fact ( )g x  is also continuous on [ ],a b .    

 
 
 

 
 
Fundamental Theorem of Calculus, Part II 
Suppose ( )f x  is a continuous function on [a,b] and also suppose that ( )F x  is any anti-

derivative for ( )f x .  Then, 

 ( ) ( ) ( ) ( )
b b

aa
f x dx F x F b F a= = −∫  

 
Proof  

First let ( ) ( )
x

a
g x f t dt= ∫  and then we know from Part I of the Fundamental Theorem of 

Calculus that ( ) ( )g x f x′ =  and so ( )g x  is an anti-derivative of ( )f x  on [a,b].  Further 

suppose that ( )F x  is any anti-derivative of ( )f x  on [a,b] that we want to chose.  So, this 

means that we must have, 

( ) ( )g x F x′ ′=  

 
Then, by Fact 2 in the Mean Value Theorem section we know that ( )g x  and ( )F x  can differ 

by no more than an additive constant on ( ),a b .  In other words for a x b< <  we have, 

 ( ) ( )F x g x c= +  

 
Now because ( )g x  and ( )F x  are continuous on [a,b], if we take the limit of this as x a+→  

and x b−→  we can see that this also holds if x a=  and x b= . 
 
So, for a x b≤ ≤ we know that ( ) ( )F x g x c= + .  Let’s use this and the definition of ( )g x  to 

do the following. 
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( ) ( ) ( )( ) ( )( )
( ) ( )

( ) ( )

( )

( )

0

b a

a a

b

a

b

a

F b F a g b c g a c

g b g a

f t dt f t dt

f t dt

f x dx

− = + − +

= −

= +

= +

=

∫ ∫

∫

∫

 

 
Note that in the last step we used the fact that the variable used in the integral does not matter and 
so we could change the t’s to x’s. 

 
 
 

 
 
Average Function Value 
The average value of a function ( )f x  over the interval [a,b] is given by, 

 ( )1 b

avg a
f f x dx

b a
=

− ∫  

 
Proof  
We know that the average value of n numbers is simply the sum of all the numbers divided by n 
so let’s start off with that.  Let’s take the interval [a,b] and divide it into n subintervals each of 
length, 

b ax
n
−

Δ =  

 
Now from each of these intervals choose the points * * *

1 2, , , nx x x…  and note that it doesn’t really 

matter how we choose each of these numbers as long as they come from the appropriate interval.  

We can then compute the average of the function values ( ) ( ) ( )* * *
1 2, , , nf x f x f x…  by 

computing, 
 

 
( ) ( ) ( )* * *

1 2 nf x f x f x
n

+ + +
 (4) 

 
Now, from our definition of xΔ  we can get the following formula for n. 

 
b an

x
−

=
Δ
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and we can plug this into (4) to get, 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

* * ** * *
1 21 2

* * *
1 2

*

1

1

1

nn

n

n

i
i

f x f x f x xf x f x f x
b a b a

x

f x x f x x f x x
b a

f x x
b a =

⎡ ⎤+ + + Δ+ + + ⎣ ⎦=
− −
Δ

⎡ ⎤= Δ + Δ + + Δ⎣ ⎦−

= Δ
− ∑

 

 
 
Let’s now increase n.  Doing this will mean that we’re taking the average of more and more 
function values in the interval and so the larger we chose n the better this will approximate the 
average value of the function.   
 
If we then take the limit as n goes to infinity we should get the average function value.  Or, 

 ( ) ( )* *

1 1

1 1lim lim
n n

avg i in ni i
f f x x f x x

b a b a→∞ →∞
= =

= Δ = Δ
− −∑ ∑  

 
We can factor the 1

b a−  out of the limit as we’ve done and now the limit of the sum should look 

familiar as that is the definition of the definite integral.  So, putting in definite integral we get the 
formula that we were after. 

 ( )1 b

avg a
f f x dx

b a
=

− ∫  

 
 
 

 
 
The Mean Value Theorem for Integrals 
If ( )f x  is a continuous function on [a,b] then there is a number c in [a,b] such that, 

 ( ) ( )( )
b

a
f x dx f c b a= −∫  

 
Proof  
Let’s start off by defining, 

 ( ) ( )
x

a
F x f t dt= ∫  

 
Since ( )f x  is continuous we know from the Fundamental Theorem of Calculus, Part I that 

( )F x  is continuous on [a,b], differentiable on (a,b) and that ( ) ( )F x f x′ = . 
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Now, from the Mean Value Theorem we know that there is a number c such that a c b< <   and 
that, 
 ( ) ( ) ( )( )F b F a F c b a′− = −  

 
However we know that ( ) ( )F c f c′ =  and, 

 ( ) ( ) ( ) ( ) ( ) 0
b b a

a a a
F b f t dt f x dx F a f t dt= = = =∫ ∫ ∫  

 
So, we then have, 

 ( ) ( )( )
b

a
f x dx f c b a= −∫  

 
 
 

 
 
Work 
The work done by the force ( )F x  (assuming that ( )F x  is continuous) over the range 

a x b≤ ≤  is, 

 ( )
b

a
W F x dx= ∫  

 
Proof  
Let’s start off by dividing the range a x b≤ ≤  into n subintervals of width xΔ  and from each of 
these intervals choose the points * * *

1 2, , , nx x x… . 

 
Now, if n is large and because ( )F x  is continuous we can assume that ( )F x  won’t vary by 

much over each interval and so in the ith interval we can assume that the force is approximately 

constant with a value of ( ) ( )*
iF x F x≈ .  The work on each interval is then approximately, 

 ( )*
i iW F x x≈ Δ  

 
The total work over a x b≤ ≤  is then approximately, 

 ( )*

1 0

n n

i i
i i

W W F x x
= =

≈ = Δ∑ ∑  

 
Finally, if we take the limit of this as n goes to infinity we’ll get the exact work done.  So, 

 ( )*

0

lim
n

in i

W F x x
→∞

=

= Δ∑  
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This is, however, nothing more than the definition of the definite integral and so the work done 
by the force ( )F x  over a x b≤ ≤  is, 

 ( )
b

a
W F x dx= ∫  
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 Area and Volume Formulas 
In this section we will derive the formulas used to get the area between two curves and the 
volume of a solid of revolution. 
 
Area Between Two Curves 
We will start with the formula for determining the area between ( )y f x=  and ( )y g x=  on the 

interval [a,b].  We will also assume that ( ) ( )f x g x≥  on [a,b].   

 
We will now proceed much as we did when we looked that the Area Problem in the Integrals 
Chapter.  We will first divide up the interval into n equal subintervals each with length, 

 b ax
n
−

Δ =  

Next, pick a point in each subinterval, *
ix , and we can then use rectangles on each interval as 

follows. 

 
The height of each of these rectangles is given by, 

 ( ) ( )* *
i if x g x−  

and the area of each rectangle is then, 

 ( ) ( )( )* *
i if x g x x− Δ  

 
So, the area between the two curves is then approximated by, 

 ( ) ( )( )* *

1

n

i i
i

A f x g x x
=

≈ − Δ∑  

 
The exact area is, 

 ( ) ( )( )* *

1

lim
n

i in i

A f x g x x
→∞

=

= − Δ∑  


