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Statistical analysis
techniques in ACT

Stephen Hibberd

10.1 Introduction

Concrete is notable as a material whose properties can vary widely depending on the
choice and proportions of aggregates, cement, water, additives etc., together with the
production technique. An associated feature is that even with a desired (target) mix the
inherent variability in the materials and the production process will inevitably result in a
final product that differs from the target requirement. Of course, provided the concrete
remains within specified tolerances on key attributes then the product is acceptable.
Effective management of concrete therefore must include a quantitative knowledge of the
key attributes, monitoring techniques, decision methods, their limitations and an ability
to interpret the measured values. Statistical techniques are consequently used extensively
to understand and compare variations between concrete batches, to modify and control
the production of concrete and to form the basis of Quality Control and Quality Assurance.

Within a short chapter it is impossible and not appropriate to provide an in-depth
coverage of statistical theory and the underpinning ideas from probability theory. An
emphasis is on statistical techniques that are exploited and applied explicitly to current
practical circumstances in ACT such as trends and errors, estimation of parameters,
checking test results, mix design, compliance and quality control. Initially each section
will concentrate on providing fundamental understanding and competence of the background
techniques that will be required and use will be made of relevant statistical tables and
formulae.
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10.2 Overview and objectives

The theory is divided into coherent sections that will provide a theoretical background to
the applications of procedures covered in other chapters as follows:

Sample data and probability measures This section aims to consolidate knowledge

on the calculation of sample statistics and their relevance together with an understanding

of probability typified by a normal distribution. Objectives are to:

— consolidate terminology and calculation of sample statistics;

— introduce concepts and measurements of probability;

— evaluate probabilities using the normal distribution.

Sampling and estimation Variations associated with the process of sampling are

addressed and quantitative measures introduced. Two statistical distributions, the -

distribution and the F-distribution, are introduced and their use to provide estimates of

key population parameters explained. Objectives are to:

— understand the concept of sampling to provide an estimate of a key (population)
values;

— calculate of the precision of estimates for large sample sizes using the normal
distribution;

— evaluate estimates and precision for small sample sizes using the #- and F-distributions;

— calculate confidence intervals and understand their application in constructing control
charts.

Significance tests The concept of decision making based on sample data is covered

and applied to the comparison of mean and variances of key parameters. Objectives

are to:

— understand hypothesis testing in using sample data to test the validity of a statement;

— understand the relationship between the significance level and critical values in
tests;

— evaluate a sample mean with a target (population) value;

— compare target means or variances from two sets of sample data.

Regression models An examination of possible relationships between linked parameters

and the derivation of useable functional relationships will be covered in this section.

Objectives are to:

— understand the concept of correlation as a measure of association between sets of
data;

— calculate a ‘least-squares’ linear regression line;

— understand and calculate correlation coefficients and residuals.

Statistical formulae and tables

A collection of some relevant formulae and tables used in ACT are provided.

10.3 Sample data and probability measures

10.3.1 Random variation

Within the physical world many natural quantities are subject to an amount of random
variation in their formation and consequently provide variation in any materials for which
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they are a constituent part. In concrete technology random variations also occur due to
changes in processing, for example due to minor chemical inconsistencies, mixing time
variation and small water quantity changes. Thus, even with the most careful of measuring
constitutive quantities, natural variations will occur in the properties of the resultant
material. Random variations will also affect measurements of all quantities X, say, as
these are subject to errors; if careful measurements are repeated or different instruments
used then the values of X will lie close to some precise value but some discrepancy must
be expected. Information and subsequent analysis on such variations can be obtained
from a study of data collected from laboratory or on-site tests. Random variation is then
often plotted in histogram form to identify principal characteristics such as central tendency,
variability and shape. For quantitative analysis then an associated probability distribution
for characterizing the variation in X is sought.

Random variations must be clearly distinguished from systematic variation that may
arise from some planned change to the process or some time-varying process. For example,
in the case of comparing the increased 7-day strength of concrete samples, as a result of
increasing additive, then a plot of strength against quantity of additive will follow an
anticipated (systematic) curve, while variation about this plot would be random error.

10.3.2 Sample data

Statistics involves dealing with information from collected data. Clearly it is important
that a sufficient quantity and the correct type of information is gathered to make predictions
reliable. These more advanced topics are covered later in this chapter; initially we concentrate
on the key ideas associated with sampling and the representation and interpretation
of data.

The most common type of ‘experiment’ involves taking a sample from a population,
1.e. a selection of items from a whole. Ideally, the whole population would be studied, but
this may be impractical for two main reasons:

e Expense — the population may be too large or testing each item may be expensive.
e Destructiveness — testing may require dismantling or running to destruction.

Generally, some form of estimation, decision or prediction is made affecting the whole
population by the analysis of data from just a sample. Care must be therefore be exercised
to distinguish between a

e population statistic — some value associated with the whole population (i.e. usually the
quantity we need to estimate);

e sample statistic — some value obtained from a sample (i.e. a value obtained from only
a part of the population).

10.3.3 Representation of data

Statistical data, obtained from surveys, experiments or any series of measurements are
often so numerous that they are virtually useless unless condensed or reduced to a more
suitable form. A necessary first step in any engineering situation is an investigation of
available data to assess the nature and degree of variability of the physical values. Sometimes

10/3
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it may be satisfactory to present data ‘as they are’, but usually it is preferable or necessary
to group the data and present the results in tabular or graphical form. For subsequent
calculations or direct comparisons then some quantitative measures of data may be required.
An unorganized list of data values is not easily assimilated. However, there are numerous
methods of organization, presentation and reduction that can help with data interpretation
and evaluation.

Histograms
Given a set of recorded data values it is useful to group the frequency of occurrence
within suitable intervals. Useful histograms can be based on

absolute frequencies — the number of data values within each interval;

relative frequencies — the proportion of total number of data values within each interval;
cumulative absolute frequency — the running total of absolute frequencies;
cumulative relative frequency — the running total of relative frequencies.

Typical histograms are shown in Figures 10.1(a) and 10.1(b) corresponding to
representations of data obtained from laboratory test for determining tensile strength of
a concrete mix as given in example Case . The distribution of data values are made
relative to intervals of width 20 and centred at mid-point values (class marks) as displayed.
Figure 10.1(a), shows a typically characteristic random variation of many quantities in
ACT; sample values are found to vary around some ‘central location’ and with some
element of ‘spread’.

Case 1 A sample of test results of the splitting tensile strength on 50 concrete cylinders

320 380 340 410 380 340 360 350 320 370
350 340 350 360 370 350 380 370 300 420
370 390 390 440 330 390 330 360 400 370
320 350 360 340 340 350 350 390 380 340
400 360 350 390 400 350 360 340 370 420
16 50
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g 0T 8 30T
“G_J 8 4+ o 25 +
% 6 L E 20
2 4l g 15 +
< S5 10 +
24 © 51
0 | 0=

295 315 335 355 375 395 415 435 295 315 335 355 375 395 415 435
Strength Strength

(@) (b)
Figure 10.1 (a) Frequency histogram, (b) Cumulative frequency histogram.
Scatter diagram (Scattergram)

In measuring systematic variations of quantities X and Y, say, the recorded data values will
be in the form of data pairs (x;, y;). An example is given in Case 2 that provides a set of
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data pairs related to measured deflections from a loaded concrete beam. When plotted on
a Cartesian plot (scattergram), such as Figure 10.2, any functional relationship between
the two variates may become more evident. The plot in Figure 10.2 perhaps suggests a
linear relationship exists between deflection and load, with variations from an exact
straight-line relationship reflecting the error associated with the data.

Case 2 The measured values of beam deflections y; against applicd loads x;

i 1 2 3 4 5 6 7 8 9 10
X; 100 110 120 130 140 150 160 170 180 190
y 45 52 54 54 62 68 75 75 92 88
100
90 - "
| |
= 80 -
5
= . E =u
Q2
T 707 n
g -
& 60 "
1 | | |
[ |
50
B |
40 T T T T T T T T T T 1
100 120 140 160 180 200
Applied load x;

Figure 10.2 Scattergram of beam deflection data.

10.3.4 Quantitative measures

For calculation, decision making and comparison purposes it is useful to obtain standard
analytic measures of the data characteristics. The two principal measures are first, that of
location, given by a single representative value locating the ‘centre’ of the data, and
second, a measure of spread or variation of data values, usually relative to the ‘centre’.
Given n data values, labelled x;, say, i = 1, n, a measure of data values location based on
the arithmetic mean of all n data values x; is the sample mean X given by
X = l 2 X
n =l

A measure of the spread in data values from their mean value is given by the sample
variance s° given by

SRR R TP
S—n_lzl(xl x)

and the derived value s = +/s? termed the sample standard deviation; the latter has the
same dimensions as the data values and is more frequently used in operational formulae.

10/5
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The above measures are widely used but simpler measures may sometimes be more
appropriate in some cases. An alternative measure for the ‘centre’ of the data is the
median, determined from data arranged in ascending order as the middle value (odd
number of data points) or the average of the middle two data values (even number of data
values). The use of ordered values can be extended to give quartiles — i.e. data values
divided in quarters or even finer divisions of tenths termed deciles. A simple measure of
spread is given by the difference between the largest and smallest data values and called
the sample range, some care is needed with this measure as it can be severely affected by
arogue data value. Case [ gives example data values used to obtain values of the sample
mean = 363.8, sample variance = 832.2 and sample standard deviation = 28.8. By comparison
the sample median = 360 and the sample range =140.

10.3.5 Population values

The above measures for mean and variance can also be applied to population values but
with a significant minor alteration, for small samples in particular. For populations of a
random variate X with finite number of discrete data values N, the (population) mean 1,
and the (population) variance G2 are given by
N
1

_ 1 , > _ 1
ux—NElx, and o2 N

M=

‘ (x; = H)2

If no ambiguity exists with the variate referenced then these may be simply written as L
and 6°. The difference in the dividing factor in the formula between the sample variance
s? and population variance 67 arises because the mean [t is exact whereas in a sample of
data values then the sample mean x provides only an estimate for the actual mean \. The

population standard deviation is defined by ¢ = v/6? as might be expected.

10.3.6 Probability

A probability is a proportional chance of a particular occurrence. Perhaps the most quoted
mathematical source of probability is the throwing of a single common dice. The outcome
of one throw is one of six numbers 1 to 6, each with an equal chance of occurrence, i.e.
the probability of obtaining a particular score is one in six — expressed as 1/6. Mathematically
an event A, say, will have

Probability of A = P(A) = Number of outcomes which result in A
y Total number of outcomes

If events are not equally likely then an appropriate modification with appropriate weightings
needs to be used; the associated link between probability values and the possible outcomes
is called a probability distribution. It is evident that a probability is a numerical measure
that lies between O and 1; if the outcome is impossible then it will have a probability of
0 while a certainty will take a value of 1. In applying probability concepts to concrete
technology it is usually not so straightforward as the example above to enumerate the
probability values, but these often exist as a result of past experience and expertise or on
the basis of laboratory testing. Probability thus provides a theory in which the uncertainty
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is known (or assumed known) to follow a specific probability distribution. In dealing with
probability theory we will be looking at assigning proportional chances to random events
through studying their associated probability distributions.

10.3.7 Probability functions

The quantities of most interest in ACT, for example compressive strength, tend to take
continuous values x, of the variate X say, and lie within a range 0 < x < c. However, the
chance of realizing values will be associated with some underlying probability measure.
In Figure 10.1(a), a distribution of tensile strengths as obtained from testing is displayed
within a histogram and indicates that values falling within different intervals had differing
frequencies, i.e. different probabilities of occurrence. The corresponding histogram Figure
10.1(b) identifies how the occurrences are accumulated for increasing values of the
variate X.

To generate quantities in Case I consistent with probability measures then frequencies
need to be scaled relative to the total sample size, i.e. to graph relative frequencies rather
than absolute frequencies as shown in Figures 10.3(a) and 10.3(b). In this case the area
under the histogram in Figure 10.3(a) will sum to unity and the corresponding cumulative
sum in Figure 10.3(b) will approach the total value of unity.

0.35 x> 1
c 4
> 037 3 8'2 1
c 1 g -
g ::; 0.25 L o071
85 027 yd S e 06T
- ® e N\ = -+
© o 0.1 1 © 0.5
2 g_ .15 A\ g 04 +
% =~ 01 7 \ 3 037 /
T 005+ ‘ ¢ 027 L/
0 = = 5 ) ]
295 315 335 355 375 395 415 435 ¢ 205 315 335 355 375 395 415 435
Strength Strength

(@) (b)
Figure 10.3 (a) Probability density, (b) probability distribution.

Although Case 1 corresponds to a finite sample, it is straightforward to recognize that
with increasing sample size, then further but smaller class intervals can be readily defined,
and the histogram columns will mark out a more continuously varying area beneath
characterizing continuous curves, such as those shown illustrated in Figure 10.3. This
process correspondingly defines two functions in dealing with continuous variates: first,
the probability density function (pdf) f(x) showing the variation of probabilities for
values x of the variate X and second, the cumulative distribution function (cdf) F(x) that
provides a summation (integration) of the probability measures for increasing values of
x. These curves characterize the underlying random processes and play a crucial role in
evaluating probabilities and quantifying the statistical analysis. Fortunately, a number of
common distributions exist that match the characteristics of processes found in ACT
situations, but even then, values are not readily obtainable from simple analytic functions

1077
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but need to be evaluated from tables of values or reference to a computer-based package
such as Excel or a specialized statistical package.

The cdf is given in terms of the integral of the pdf and, conversely, the derivative of the
cdf is the pdf i.e.

dF (x)

7 =S () and F(x)= |f(x)dx

least x

Following from our earlier work, the total probability is 1, which corresponds to the total
area under the pdf curve that provides an essential constraint on the possible forms for
f (x). The cdf is adding probability values in the direction of increasing possible values
x, so the curve will increase continually to a final value of unity. The probability value for
a random variate X to lie between two values a and b, say, is the area under f (x) between
x = a and x = b; evaluation is obtainable from integration of the pdf using the cdf as
follows:

x=b x=b x=a
Pla<X<b)= |f(x)dx= |f(x)dx — |f(x)dx=F(b) - F(a)
x=a x=0 x=0

These ideas are crucial to evaluate relevant probability values from values of the cdf as
given in tables.

10.3.8 Expected values

The pdf gives detailed information on the range of values a variate might take and their
appropriate chance of occurrence. It remains useful to calculate some key quantities
associated with these distributions such as the most likely (mean) value or the expected
measure of spread. In this instance, all possible values are available and we are dealing
with population quantities. Formally, these are called expected values and can be formulated
for any function ¢(X), to give a weighted average value and defined by

Ef{¢(X)} = |o(x) f(x)dx
allx
Expected values of the variate X or any powers of X are termed moments; the most
important are:

(1) ¢(X) = X, to give the population mean L;
(1) oX) =X - u)z, to give the population variance o>
For any pdf function then these can be evaluated and are used within the subsequent

statistical analysis in comparing the predicted population values with the observed sample
values.

10.3.9 Normal distribution

The normal distribution (or Gaussian distribution) is the single most important and widely
known distribution in engineering and plays a central role in the theory associated with
concrete technology. The pdf is given by
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Figure 10.4 (a) pdf of My, 2, (b) pdf and cdf for (0, 1).
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26?

1
f=— Tom OXP {
This involves two characterizing parameters corresponding to the mean U and standard
deviation o of the distribution and accordingly the distribution is denoted by N(u, 6°) for
convenience.

The pdf has a bell-shaped curve as shown in Figure 10.4(a) which is symmetric about
the mean W, a maximum value of 1/6+/2m and with a shape that rapidly decays to zero
for values away from the mean. While f(x) has non-zero values for all positive and
negative values of the variate x, it is negligible for most practical purposes when x is more
than a distance 36 from pL. The corresponding cdf is shown in Figure 10.4(b) and although
it does not have a simple functional formulation it can be evaluated numerically. Figure
10.4(b) shows both the pdf and cdf of N(O, 1), i.e a distribution with mean zero and
variance unity.

The distribution for N(0, 1) is particularly important as it provides a base calculation
for any normal distribution and is consequently well tabulated. Statistical Table 10.1
gives a table of values shown in Figure 10.4(b).

The normal distribution is often used for its relative simplicity combined with a proven
ability to provide accurate quantitative information when used in appropriate circumstances.
It also has the useful ‘addition’ property that if X; ~ N(u,, (512) and X, ~N(W,, G%)
then the random variables

} with — o< x <

Xi+X, ~N(Ui+Up,67 +03) and X — X, ~N(U; — 1, 0f +0G3)

i.e. that new quantities constructed from addition of normal variables will be normal and
the resulting parameters can be readily calculated.

10.3.10 Calculation of probability values
(from standard tables)

Probabilities associated with the standardized normal variate N(0,1) can be obtained
directly from a table of values for the cdf F(z), and some algebraic manipulation. The

1019
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basic approaches are displayed in the following examples illustrated in Figure 10.5,
where the required probability measure corresponds to evaluating the area of the marked
portions of the pdf; values are determined from Statistical Table 10.1. As is typical with
tables for symmetric distributions, the values corresponding to only positive values of the
variate X are explicitly displayed. However, corresponding negative values are readily
obtained from the symmetry of the pdf as:

f(2)=f() and F(-2)=1-F(2)
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Figure 10.5 Evaluations of probability values from the standardized normal distribution (0, 1).

10.3.11 Standardized normal variate

The normal distribution has a number of special properties, one of which is that it has a
simple scaling rule. This allows all calculations for probabilities from any normal distribution
to be calculated from the single set of numerical values of N(0, 1), called the standardized
normal distribution, graphed as Figure 10.4(b) and values given in Statistical Table 10.1.
For any normal variate X, then an associated standardized variate Z is defined by

X-u
c

Z =
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and can be shown to have the property that Z ~ N(0O, 1). Thus in practical calculation,
probability values for a distribution N(11,6%) can be rewritten and then evaluated in terms
of N(0, 1). As an example consider P(X < a), where X ~ N (1, &°). Then by simple algebra

P(X<a)=P(X"“<a_“)

(¢} (0}
ie, P(X<a)=P(Z< “;”)
where Z= X-u
(¢}

is the standardized variate and the value of this probability is readily obtained from the
distribution N(O, 1). In a similar way, any calculation of probabilities from a general
normal distribution involving a random variate X can be recast into an equivalent calculation
in terms of a standardized variate Z and calculation found in terms of a single set of
normal values — the standardized normal values. Such values are either tabulated or held
in any computer statistics package.

10.3.12 Example

A specification for the cement content of pavers is specified as 16.9 per cent from
contractors. The mean and standard deviation of the cement contents of 50 pavers were
tested as 17.2 per cent and 1.8 per cent, respectively. Contractors would be concerned if
many pavers had cement contents below 15 per cent. Assuming the cement content
follows a normal distribution, estimate the number of pavers that would be below standard.

Let X = cement content of pavers, then X ~ N(17.2, 1.8%). The probability of a single
paver with cement content less than 15 per cent is calculated as

1.8 1.8

Calculation of the probability is reduced to finding an associated probability of the
standardized variate Z. Using Statistical Table 10.1, the probability is given by P(Z < —
1.22) = F(-1.22) = 1 — 0.8888 = 0.1112. Thus the approximate total number of pavers =
50 x 0.1112 = 5.56.

The calculated number is approximately 6 pavers but there are several sources of error.
Variations will exist in the measurements particularly as cement content analyses are not
exact measurements of the actual contents of selected pavers. In statistical terms also, the
sample mean and standard deviation used in the calculation are sample values and
not population values. Assessment of accuracy of such estimates is covered in later
sections.

P(X < 15) = P(X_ 172 15 - 17'2) =P(Z< -122)

10.3.13 Critical values

Many probability distributions identify that the variate can take a wide range of possible
values but most of the probability is assigned within a relatively small range, e.g. for a
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standardized normal distribution approximately 95 per cent of the probability lies within
arange —2 < z < 2. Correspondingly, untypical values of the variate are identified from the
wider extremes of the pdf often called the ‘tails’ of the distribution. The extent of these
regions depends on the specified probability to be designated in the tails. For computational
purposes it is useful to identify these critical regions and enumerate these limits, called
critical values, for given probabilities, called significance levels, at the extremes of the
pdf. Illustrations of possible critical regions and associated critical values are shown for
N(0, 1) in Figure 10.6 for a significance level of o= 0.05.

05 05
© 04
- AN
/ 0.2 / 02 \
/ 0 o1
/ 0.0 : 0.0 >>>\
-3 -2 -1 0 1 z 2 3 -3 -2 -1 0 1 2 3
* -Z, Z,

Figure 10.6 (a) Right-hand tail (o0 = 0.05), (b) right- and left-hand tails (o = 0.025 in each tail).

(a) One tail — Figure 10.6(a) shows the right-hand tail region for N(0, 1) which contains
a probability (significance level) of 0.05 (5 per cent). The critical value z, is readily
determined from Statistical Table 10.1 as z, = 1.645. For this symmetric distribution the
critical values for an analogous left-hand tail are readily obtained as the negative of right-
hand critical values.

(b) Two tails — Figure 10.6(b) shows the critical regions corresponding to a total probability
(significance level) of 0.05 (5 per cent) divided equally into two tail regions, an amount
o= 0.025 is in each tail; the corresponding critical values are z, = 1.960 and —z, =—1.960.

Generally for two-tailed critical regions the probability is divided equally into both
tails and significance level taken as 2a. Critical values z, can be readily found from the
cdf values of the distribution but for convenience it is useful to compile a separate table
of critical values such as shown in Table 10.1 for the standardized normal distribution
corresponding to typical significance levels oo = 0.05 (5 per cent), 0.025 (2.5 per cent) or
0.01 (1 per cent) in the right-hand (upper) tail.

Table 10.1 Critical value z, for N(0,1) with significance levels o (right-hand tail)

o 0.25 0.1 0.05 0.025 0.01 0.005 0.001
Za 0.675 1.282 1.645 1.960 2.326 2.576 3.090
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10.4 Sampling and estimation

10.4.1 Sample statistics

Statistical Inference is concerned with using probability concepts to quantitatively deal
with uncertainty in obtaining representative values and making decisions. The basis is to
obtain samples (from a population) to analyse and infer properties of the whole population.
For example, to obtain the ‘true’ (i.e. population) average potential strength of concrete
in a structure, one would need to put all the concrete for this structure into cubes and test
them! Clearly this is not desirable or feasible, so an alternative is to take a number of
random samples and obtain an estimate of the potential strength from the sample. For a
given mix, the sample mean from testing the compressive strength of five concrete cubes
might be calculated and taken as the strength of the whole mix. However, for more
detailed analysis we might wish to know quantitatively the possible error with such a
small sample size and to what level this might be improved by taking a larger sample. In
this section details are provided of the underlying theory, probability distributions and
how these are applied to use sample values to infer a value or parameter associated with
the population. This may involve giving a range of values, called a confidence interval,
consistent with a specified probability.

The underlying concept is that typically a collection of sample values X; will be used
to form a statistic Z, formed by some appropriate combination of sample values to provide
an estimate of a population value. Each of the quantities X; will take random values
determined by its own distribution, but in estimation it is distribution of Z, the sample
statistic, which is required. The most important statistics for use in ACT will be the
sample mean X as an estimator for the population mean y and the sample variance s° as
an estimator for the population variance 6°.

10.4.2 Large-sample statistics (normal distribution)

The most widely assumed distribution for a sample mean X is that it is normal or can be
well approximated by a normal distribution. This is because many natural phenomena
tend to vary symmetrically around some mean value and with variations that fall off
rapidly from some mean value. Furthermore, use of the normal distribution for the sample
mean when large samples are involved is justified by the following mathematical result
(Central Limit Theorem — CLT). The result is exact for the case where sampling occurs
for variables X; that can each be assumed to vary as normal a normal distribution.

If n random samples are taken from a population with mean U and standard deviation
o then the sampling distribution of X the sample mean will be approximately normal
with mean 1 and standard deviation G/~/n, the approximation improving as n becomes
larger,

_ 2
ie. X ~N ( W, 67) or, in terms of the standardized variate,

_X-u

- G/\/;

Z

~N(@O, 1)
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This indicates explicitly that ‘on average’ the sample value X will predict the population
value | and that the accuracy will be characterized by an associated standard error, more
explicitly writtenas oy = ox/ \/; . Thus, the standard deviation of the sampling distribution
O ; is affected by both the standard deviation of each sample value Gy but also with the
number of sample values n. The effect of sample size can be assimilated graphically as
shown in Figure 10.7 which shows the sampling distribution Z from a distribution with p
=5 and ¢ =1 for increasing sample sizes n = 5, 25 and 100. In each case, the mean value
of Z is centred around | = 5 but the probability associated with any individual test shows
that the possibility of recording a sample value as inaccurate as 0.5 or greater from the
population value is feasible for n = 5, unlikely for n = 25 but negligible for n = 100.
Evaluating these probabilities using the normal tables gives respective probability values
0.2628, 0.0124, 0.0000. It also illustrates that the standard error 6/+/n decreases only
relatively slowly, as 1/4/n, with increasing sample size n.

4.0 T
T m n=100
3.5
T I \ u=5o0=1
3.0 \
2.5 \

2.0

1.5
0.5
1 J \ n=>5

0.0 f

Effect of sample size

Figure 10.7 pdf of sampling distributions with n =5, 25, 100.

The CLT result is useful provided a large enough sample is taken, often n > 30 is
usually good enough, but in practice the population standard deviation ¢ is also unknown
and needs to be approximated by the sample standard deviation s; this result remains a
good approximation but for sufficient accuracy we may need an increased sample size to
compensate of n > 80.

10.4.3 Small-sample statistics (t-distribution)

The statistical analysis provided in the previous section gives underpinning theory that
can be applied in ACT but for practical purposes it is not feasible to always have large
sample sizes. When a sample size n is not large then the distribution for the sample mean
X is no longer accurately approximately by a normal distribution and a more appropriate
distribution is the 7-distribution. For much of the practical testing required in ACT then
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the appropriate statistical distributions is the #-distribution. The form of the probability
distributions (pdf) of ¢, and #;5; as shown in Figure 10.8 compared to the pdf of the
standardized normal distribution N(O, 1).

0.40

0.35 fis j\
] i
] /R
0.20 I // / ’l21\\\
] )\
J \

pdf £(2)

0.15

i N\

0.00

Z-axis

Figure 10.8 Comparison of t-distribution with the normal distribution.

The sampling variate for the population mean and corresponding sample distribution
is defined by

_X-w
il

This variate is similar to the expression from using the CLT except that it incorporates
directly the sample standard deviation s to replace the usually unknown population value
©. The characterizing sample distribution is one of a family of 7-distributions selected by
a parameter v = n — 1, called the number of degrees of freedom. The formula for the curve
of the distribution is complicated but values are tabulated in the same way as the normal
distribution. Important characteristic properties of the distribution are:

t

the z-distribution is symmetric (only positive values are usually tabulated);

less peaked at the centre and higher probability in the tails than the normal distribution;
a marginally different distribution exist for each value of v;

as v becomes large, the r-distribution tends to the standardized normal distribution
N(O, 1), (v = oo);

e values are obtained from #-tables although a restricted set of critical values often
suffice.

A selection of critical values 1., for the t-distribution, corresponding to those for the
normal distribution (V = o), is given in Table 10.2. A more complete listing of cdf values
is given in Statistical Table 10.2.
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Table 10.2 Upper critical values ., of ¢-distribution 7, for one-tailed significance level o

v 1 2 3 4 5 6 7 8 9 10

o =0.05 6.31 2.92 2.35 2.13 2.02 1.94 1.89 1.86 1.83 1.81
o = 0.025 12.71 4.30 3.18 278 2.57 2.45 2.36 2.31 2.25 223
o =0.01 31.82 6.96 4.54 3.75 3.36 3.14 3.00 2.90 2.82 2.76
v 12 14 16 18 20 25 30 60 120 oo

o =0.05 1.78 1.76 1.75 1.73 1.72 1.71 1.70 1.67 1.66 1.64
o =0.025 2.18 2.14 2.12 2.10 2.09 2.06 2.04 2.00 1.98 1.96
o = 0.01 2.68 2.62 2.58 2.55 2.53 2.49 2.46 2.39 2.36 2.33

10.4.4 Confidence intervals

Given sample values X, X,, . . . X, then using a suitable statistic Z an estimate for a
population value can be obtained from a sample value, but importantly an indication of
the accuracy of this estimate may also be required explicitly. Knowledge of the distribution
of the sample statistic can be used to determine an interval within which the population
value might lie with a specified probability. Such a prescribed probability is called the
confidence level, ¢ say, and the resulting interval the confidence interval. The confidence
level may be expressed directly as a probability, e.g. 0.95, but is often expressed as a
percentage, i.e. confidence level of 95 per cent.

As an example of the technique, consider obtaining the confidence interval for the
population mean [ from sample values. In this instance the sample statistic Z is usually
denoted by ¢ and is given from earlier by

_X-u
B s/An

Sample data will provide values for X, s and v. We first seek to determine an interval
—lgy < I <1, say, that has an associated probability of 0.95 for the variate ¢. As the total
probability is 1, then determination of values ., is identical to determining the two-tailed
critical values as shown in Figure 10.6(b) with a probability (1 — ¢) distributed between
each tail. With ¢ = 0.95 then the corresponding critical values correspond to obtaining
critical values associated with a significance level of o = 0.025 in each tail. Hence the
critical values are given by 7, = ., and determined from Table 10.2. Example values are:

n=10 (v =9); ty9=225
n=6(v=>5); tos = 2.57
n=100 (v=99); ty..=1.98

t

~ ty), Wherev=n -1

With n =10, the confidence interval is

1X — ul
—225<——-<225
s/+/10

and can be rearranged as
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X-225-3% <«u<X+225-3
N J10

to provide a confidence interval for the population mean u with a confidence level of 95
per cent, once sample values for X and s are substituted.

Example

A sample of 32 concrete cubes from a certain mix were crushed and the average strength
was 30 Nmm™ with a standard deviation of 5 Nmm™. What is the 95 per cent confidence
interval for the strength of the population mean for this type of mix?

The mix strength p is determined from sample values n = 32, X =30, s =5. The
significance level in each tail is oo = 0.025, v = 31 and critical values are determined from
Table 10.2 as 1 gp5.3; = 2.04 (nearest table values used) and hence a 95 per cent confidence
interval is evaluated as

30 = 2.04 X —2— < 11 <30 +2.04 x ——

V32 V32

to provide a 95 per cent confidence interval for mix strength as 28.20 < u < 31.80.

10.4.5 Control charts

Confidence intervals can be exploited to provide the basis of control charts to monitor
production values through ongoing sampling. For large sample sizes, critical values of the
normal distribution can be used to determine corresponding confidence intervals for a
population mean L as

(X -l
o/\n

confidence;

(X -l
o/n

cent confidence;

(X — )l
o/n

cent confidence.

< 1 with probability 0.68, i.e. X — 6/+/n < <X + 6/+/n with 68 per cent

< 2 with probability 0.95, i.e. X —26/+/n <u <X + 26/+/n with 95 per

< 3 with probability 0.998,i.e. X — 36/+/n < < X + 36/+/n with 99.8 per

Figure 10.9 illustrates that confidence intervals can be used to obtain predetermined
levels, within which sample mean values should lie with a given confidence. For example,
values should lie within the lines marked ‘action’ with 95 per cent confidence. Thus,
successive sample values from an ongoing process can be monitored and compared to the
expected population value. Sample values will naturally vary from the population value
but if recorded values lie outside set levels of confidence then increasingly strong indication
is provided that the production system requires attention. Application of this concept can
be further developed to provide Shewart and CUSUM charts as discussed in Chapter 9.
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Z-axis

U+ 20/n'? 1

u + o/n'2

u— G/n1/2

u —20/n"?

Sample value

T T—————————————————— Action
Warning
= = < Sample
1 > X x number
TR g X — e o K — —
E 0 5 10 < 15 20
= - < Warning
e Action

Figure 10.9 Use of confidence intervals as basis of Control Chart.

10.4.6 Comparison of means

An important technique is to be able to compare the population means between two,
possibly competing, processes. This might be to ascertain, for instance, whether changing
a mix formula will provide an actual increase in compressive strength. The practical
difficulty is that a mean value, calculated for each process, will be obtained from sampling
and so will be affected by random variation. Consequently, any difference may be accounted
for entirely by natural variation and not indicating any changes within the underlying
(population) values. Similarly, any measured differences in the sample values may be an
over-estimate or an under-estimate of the the effect on the population values. To account
for sampling then it is useful to identify a confidence level with any calculation of
differences between population values.

In the case of comparing the population means |, and [, from separate processes X,
and X, with large sample sizes n; and n, then from the CLT applied to each process the
separate sample statistics for the sample means X; and X, are

X~ Ny, 07 /m) and X, ~N(Uy, 03/n;)
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involving each individual process standard deviations 6| and 6,. The ‘addition’ property
of the normal distribution can be used to obtain a sample distribution of the difference as

Xi— X, ~N(iy — o, 07/n+ 05/ny)

i.e. that the variation measured from the difference in sample means is described by a
normal distribution centred around the difference in population means. This result also
highlights the importance of the standard error (standard deviation) of the sampling
distribution for the comparison of means from two large populations, namely

2

2
Si %>

For calculation then the appropriate standardized normal variate is
K- Xo) - (G — 1) and distributed as Z ~ N(O, 1).

7=
\/cf/n1+c§/n2

As previously in dealing directly with the CLT, the population standard deviation G is
generally unknown and must be approximated by the sample standard deviation s. In a
similar way as earlier, this process can be adopted with little error for large sample sizes.
For the practical case of comparing the population means from two general processes X
and X, irrespective of sample size, with sample sizes n; and n,, then a modification to the
sample statistic is possible that leads to a sample statistic involving a 7-distribution. The

sample statistic is
Y v 2 2
o X - X)) - (- W) where s2 = (m = Dsi + (ny = Dsj

s1/n; + 1/ny ny+ny—2

and ¢ ~ t[‘,] with v = n+ny— 2.
This result also highlights the general result for the standard error of the sampling
distribution for the comparison of means from two populations, namely

n —1)s? + (ny, — 1)s2
S,=s5, |+ where g2 = - Dsi*+(ma - s

p ny ny P n]+n2—2

Example

Data from two mixes were tested. From the first mix, 30 cubes were tested and found to
have a mean strength of 38 Nmm™ and a standard deviation of 3 Nmm™. The second
mix provided 40 cubes with a mean strength of 36 Nmm™ and a standard deviation of
2 Nmm™. Obtain a 95 per cent confidence interval for the difference in mix strengths.

Using the notation above, for the first mix (X,) then n, = 30, X, = 38, spo =3
and for the second mix (Xg) then ng = 40, X, = 36, s = 2.

The parameter values for the z-distribution are X A - )_(B =2,v=068and s =2.48.

With a confidence level of 95 per cent then a corresponding two-tailed critical region is
defined by
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| #1<2.00 following reference to Statistical Table 10.2 for the critical values for #j 5.8

2 —(up — Ug)

1.€.
‘ 2.48/1/30 + 1/40

This gives a confidence interval for the difference in mix strengths as 0.80 < (L — M) <
3.2, i.e. that the strength of mix A is stronger than the strength of mix B by a value of
between 0.8 Nmm™ and 3.2 Nmm™.

< 2.00 with a probability of 0.95.

10.4.7 Comparison of variances

In comparing two processes then it may be useful to compare the amount of the underlying
variation induced by the random elements of each, i.e. to compare the population variances.
To confirm if given samples from a population X and from a population X, are consistent

in having equal population variances 612 = G% then a statistic is available as

2

F = —12 which is distributed as an F-distribution, Fj,, v,
s
2

where v{ = n; — 1, v, = n, — 1 are parameters to define each distribution.
The distribution for the F-distribution depends on two degrees of freedom v;, v, and
has a general shape as shown in Figure 10.10

1.0

0.8

0.6

pdf £(2)

0.4

Fis, 2

L~
|

0.2

z-axis

0.0 t t t t :
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 10.10 Typical shape of an F-distribution.

Important properties of the F-distribution are:

e the F-distribution is not symmetric;
e marginally different distributions exist for each pair of value vy, v,
e critical values are obtained from F-tables (see Statistical Table 10.3).
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Within typical use, the requirement is to use a two-tailed test, i.e. to evaluate lower and
upper critical values c; and c¢,, say, corresponding to a significance level 2¢., from

P(F <c¢y)=0oand P(F > ¢;) = o

In practice, it is usual to use only the upper critical value ¢, = Fy., v,, corresponding to
a probability value o in the upper tail, by ensuring the sample statistic is taken as

F = largest sample variance/smallest sample variance (>1 automatically)

and readily accomplished by designating the sample data values corresponding to the
larger sample variance as the numerator and the smaller sample variance data for the
denominator. If required, values for the lower critical value c; are obtainable from Statistical
Table 10.3 as ¢; = 1/F_, ,; in this calculation the upper part of the distribution has
probability (I —¢). As an illustration, with = 0.05, v; = 6, v, = 4 then the upper critical
value ¢, = Fg5.64 = 6.16 and the lower critical value ¢; = 1/F 95,46 = 1/4.53 = 0.22. An
example of the use of the F-variate is given in the next section.

10.5 Significance tests

10.5.1 Hypothesis testing

As part of monitoring manufacture or supply of components we may need to test the
validity of a statement (or hypothesis) relevant to a population value by analysing a
sample. Consider the illustrative example of a manufacturer of poker vibrators that claims
that their product has an average life of 500 hours. Results from monitoring a sample of
36 such vibrators showed that the average life was 450 hours with a standard deviation of
150 hours. Does this disprove the manufacturer’s claim?

In this case we are looking to evaluate the validity of the manufacturer’s claim to
within what might be regarded as a reasonable probability. Clearly, due to the variability
in poker use it would not be anticipated that all pokers would last exactly 500 hours or
even that a sample of 36 would have a mean value of 500 hours. If the mean value were
495 hours, say, then it might be suspected that the manufacturers claim was upheld while
a value of 300 hours would raise significant concerns. It is perhaps ‘reasonable’ that a
sample value of 450 hours is consistent with a target (i.e. population) lifespan of
500 hours, the difference being accountable to sampling variations. To provide quantitative
measures to help then a statistical procedure termed ‘hypothesis testing’ is available that
is linked to a stated probability value considered as ‘unreasonable’ — the significance
level. In this example the random variables are

X; = lifetime of each poker i, i =1, 2, ..., 36

and the stated (population) mean lifetime p = 500.

Given the sample of pokers, we test the hypothesis that @ = 500. This is called the null
hypothesis and denoted as H, (i.e. Hy: L = 500) and is characterized as giving a specific
value in order to determine an appropriate test statistic. Statements such as u < 500 or
K > 500 for the null hypothesis are not specific enough to formulate a subsequent analysis
but do provide possible alternatives to accepting the null hypothesis. If the data is conclusive
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enough to reject Hy then we must be accepting an alternative hypothesis H;, say, which
generally will affect the decision and so must always be clearly identified.
In the example there are two obvious choices for H,

(1) H;: p+#500 - the poker manufacturer may find this favourable since
I < 500 means goods are under specification
p > 500 means specification could be upgraded.

(1) H;: Wu < 500 — the consumer is interested in under-specification.

The sample data will be used to devise a test statistic in order to decide whether to accept
or reject Hy. In this case it is an estimator for the population mean that is required as given
in terms of the sample mean X. The most appropriate sample statistic will be

_X-up
B s/an

with population mean p and have a sample distribution 7 ~ 7;,,_y). _

In Case 1 the hypothesis H; would be selected over the null hypothesis Hy if X is
sufficiently greater than 500 or sufficiently smaller than 500; these discriminating values
are associated with two-tailed critical values. With Case 2 then H, would only be rejected
in favour of H, if the sample value was sufficiently small with the discriminating critical
value associated with a one-tail (left-hand) critical value.

The rationale for hypothesis testing is to assume that H is true (and so the statistical
analysis based on H is valid) and to identify the related critical value(s) for a specified
significance level o, associated with the choice of H;. The value of the significance level
is determined by circumstance or regulation but a typical value used for illustration is
taken as o = 0.05 (sometimes quoted as 5 per cent). The sample data is used to identify
the validity of H, by checking if the sample value is consistent with the statistical analysis.
This is determined by checking if the data value falls within the anticipated range (acceptance
region) of probability of size (1 — ) as determined by the critical values. Critical values
are illustrated in Figure 10.11; Case 1 involves two tail regions defined by a lower value
¢y and an upper value ¢, whilst Case 2 has an upper tail region identified by an upper
critical value c5. Values of the critical values are found directly from the appropriate table
of critical values for the sample distribution. If the sample value falls outside a critical
value (i.e. sample value falls within an appropriate tail region) then it is deemed not
acceptable and the null hypothesis is considered untrue as a consequence.

In this example,

Case 1: Hy:pu = 500, Hy:u > 500 or p < 500
and on taking values for , s and n from the null hypothesis the test statistic is

t

;= X =500
150/~/36

The sample distribution is 735). Taking a significance level of o = 0.05 split between two-
tails (i.e. a probability 0.025 in each tail) the critical values are readily determined from
Table 10.2 as ¢y = -2.04 and ¢, = 2.04 (using symmetry of the r-distribution).

The data value for the test statistic is obtained on substituting the observed value for
the sample mean as

450 — 500
————=-2.00
150/+/36

>
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o c Cs

(@) (b)

Figure 10.11 (a) Rejection regions Case 1, (b) rejection region Case 2.

This value falls within the acceptance region (marginally), i.e. within the bulk region
outside of the rejection region(s). A conclusion is that, relative to the alternative hypothesis,
the observed value falls within a region that is consistent with the random variation
anticipated and the hypothesis (L = 500 is accepted.

Case 2: Hy:i = 500, Hy:u < 500.
The test statistic and the data value is the same as Case 1, i.e

= X =500 4 ~_ 450 -500 _
150/~/36 150/~/36

In this case the only rejection region for the null hypothesis is defined by a one-tailed
(lower) region with significance level oo = 0.05 and determined with reference to Table
10.2 as ¢3 = —1.70 (from symmetry upper and lower values differ only by a sign).

The observed value of the test statistic 7 = —2.00 therefore falls within the rejection
region and a conclusion is that the manufacturer’s claim has not been achieved, i.e. the
difference between the claimed and observed values cannot be attributed to natural variations
with the stated significance level and the hypothesis i = 500 is rejected and p < 500 is
accepted.

The discrepancy in conclusions between Cases 1 and 2 highlights the importance of
identifying an appropriate alternative hypothesis and specification of the significance
level.

-2.00

Summary - general theory

The stages identified in the above example can be applied more generally to other practical
situations and follow a similar approach although the choice of test statistic and its
associated distribution will change accordingly. A summary of the stages is:

1 Make a null hypothesis H, and an alternative hypothesis H, (H, is always chosen to be
specific to fully specify a sample statistic).

Assume H,,is true and identify an appropriate test statistic ¢ and its associated distribution.
Obtain a numerical value for 7 using the given sample data 7, say.

Specify a significance level o and determine a critical value (or values).

Accept H, or reject (i.e. accept H,) depending on whether the sample value 7 falls
within an acceptance or rejection region.

[, I SNV I\
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10.5.2 Comparison of means

Hypothesis testing can be readily used to help determine if differences on sample mean
values measured between two processes are significant as shown in the following example.

Example
Concrete from two separate mixes averaged 25 Nmm™ and 30 Nmm™ respectively. In
both cases 6 cubes were taken. Calculate if there is a significant difference between the
two mixes when the standard deviation of the first was 3 Nmm™ and the second was
5 Nmm™.

The variates in this case are X; and X, the strength of each mix. Associated data values
for each mix are sample sizes n; = 6 and n, = 6, sample mean values X, =25and X, =
30, sample standard deviations s; = 3 and s, = 5.

The relevant test statistic is given from earlier as a comparison of sample means

X=X Q) o n = s+ (= DS

s /l/ny + 1/n, np+ny -2

and t~1t, with v=mn;+n,-2.

In the above W; and |, are the relevant population mean values which are unknown.
However, an astute choice of hypothesis makes this unnecessary; the two hypotheses
chosen are:

Hy: null hypothesis [; = W, (this will prove specific enough)
H,: alternative hypothesis [, # WL, (this defines a two-tailed test).

Assuming the null hypothesis applies then the test statistic becomes after evaluation:

- (X, - X,)
s/ 1/3

where s = 4.123 and 7 ~ 17
The data value for the test statistic is

25-30 _
T3 %0577 - >l

Taking a significance level of 0.05, then critical values are associated with two tails, each
with a probability of 0.025 and upper value can be determined from Table 10.2 for #; (5.1
as ¢, = 2.23. Thus it follows that the acceptance region for the null hypothesis is —2.23 <
t <2.23. The calculated data value lies within this region, from which it is possible to
conclude that the null hypothesis is consistent with the data and therefore there is no
significant difference between the strengths of the two mixes.

The test statistic specifically used in this section is often termed a ¢-statistic and can be
usefully identified as

>

‘= observed difference in means
o
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10.5.3 Comparison of variances

Use can be made of the F-distribution to determine if any changes to a process has
resulted in a smaller variation (measured by sample variances) rather than just to random
choice as identified in the following example.

Example

The sample variances for the diameters of 23 nominally identical cast cylinders was
1.93 mm?. For a random sample of size 13 taken from a second population the corresponding
figure was 4.06 mm?. Would one be justified in assuming that the two populations have
diameters with the same variability?

The variates in this case are X; and X, the cylinder diameters from the two sources and
the test is based on a comparison of population variances 6i and ©3. A test statistic is
given by

largest sample value of s 12

smallest sample value of s3

and distributed as F,, ,,), where vi =n; -1, v, =n, — 1.

Comparing with the data values then 512 =4.06 (largest value), n; = 13 and s% =1.93,
n, = 23.

The relevant two hypotheses are:

Hy: null hypothesis 67 = 65 (i.e.67/05 = 1)

H,: alternative hypothesis 67 # 63 (this defines a two-tailed test).

The data value for the test statistic is evaluated as F = 4.06/1.93 = 2.10.

Taking a significance level of 0.05, then critical values are associated with two tails,
each with a probability of 0.025 but preliminary selection of taking the largest sample
variance as the numerator means only the upper value is relevant. A critical upper value
associated with a probability oo = 0.025 is given from a table value for Fys.12, and
determined as ¢, = 2.60. Thus the upper rejection region is F> ¢,, and comparison of
values gives that F lies below the rejection region and a conclusion is no significant
difference between variation in the two populations.

The test statistic specifically used in this section is termed an F-statistic and can be
expressed as

G2
F = —; [where 6, > 05]
2

10.5.4 Significance and errors

An obvious factor with hypothesis testing is the choice and meaning of the significance
level. By nature of dealing with processes that involve variation then some error is always
present but it is important to try to quantify any error and evaluate any subsequent
consequences. The significance level, o say, is in fact a probability measure:
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P(rejecting Hy when it is true) = o

and is the chance that the test statistic value Z falling in the rejection region within a
hypothesis test could have occurred as a rare event rather than an incorrect hypothesis H,.
Such an error is called a Type 1 error and obviously should be made as small as possible.

However, decreasing o increases the chance of making a Type 2 corresponding to
failing to rejecting the hypothesis Hy when it is false. The value for this error 3 is given
by the probability

P(accepting Hy when it is false) = B.

In sampling, a decision has to be made for the value of o and/or 3 by taking into
account the costs and penalties attached to both types of errors. However, as might be
expected these values are linked; generally decreasing Type 1 errors will increase Type 2
errors and vice versa. Calculation of the links between the parameters o, B and n depend
upon the specific test chosen and can be very involved. In practice a decision rule for a
significance test is determined by taking a significance level o and arrive at an appropriate
rule; the associated values of [ can be computed for various values of n. Alternatives that
may be used are:

e given a decision rule — compute the errors o and 3
e decide on o and B and then arrive at a decision rule.

A related curve is that of B known as the operating characteristic curve, or O-C curve, and
is described in Chapter 9.

10.6 Regression models

10.6.1 Correlation

Correlation is concerned with the amount of association between two or more sets of
variables. An illustration is given earlier in Case 2 for the deflection of a concrete beam
where the scattergram of the data displayed in Figure 10.2 shows a strong linear relationship,
with increasing values of beam deflection (y) associated with proportionate increasing
values of applied load (x). The amount of association for different situations may not be
so discernible as illustrated in the following sets of data:

Case 3 An experimental determination of the relation between the normal stress (x) and
the shear resistance (y) of a cement-stabilized soil yielded the following results:

Normal stress x kN/mm? 10 12 14 16 18 20
Shear resistance y kN/mm? 10.9 18.7 154 25.1 19.3 17.6

Case 4 Percentages of sand (y) recorded at different depths (x) from samples were:

X (mm) 0 400 800 1200 1600 2000 2400 2800 3200
v (%) 70.2 52.9 54.2 52.4 47.4 49.1 30.7 36.8 374
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Case 5 Failure loads concrete beams with load for first crack (x) and failure load (y) were:

load x
load y
load x
load y

10350 8450 7200 5100 6500
10350 9300 9600 10300 9400
9500 6500 9300 6000 6000
9500 10200 9300 9550 9550

10600 6000 6000

10600 10100 9900
5800 6500

10500 10200

The relationships between values y and x can be individually plotted on a series of
scattergrams as shown in Figure 10.12 from which the qualitative association between the
variables x and their linked values y can be assessed.

26

24

22 1

20

18

16

Shear resistance

14

12

10

Case 3
Cement stabilizing of soil

Case 4

Sample testing of soil

10 12 14 16
Normal stress

10800 7
10600 -
10400 ‘
10200 -

10000

Failure load

9800
9600
9400

9200

701 =
T 60
4]
[2]
ks n
= S 50
©
<
(0]
e
(0]
o 404
30
L L B
20 500 0
Case 5

Failure testing of concrete beams

NS S S S p S e S p . p——
5000 6000 7000 8000 9000 10000 11000

First crack load

Figure 10.12 Scattergrams of data for Cases 3, 4 and 5.
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In Case 4 then a trend exists where decreasing values of y are linked to increasing
values of x; the data perhaps suggest a linear relationship could exist. Looking at the
scattergram for Case 5 it is difficult to perceive that any meaningful relationship exists
between the variables x and y. Data from Case 3 shows some trend exists in that increasing
values of x are associated with increasing values of y, but the relationship is not obviously
linear. Clearly, it would not make sense to seek a linear relationship for Case 5 but that
a linear relationship could reasonably be sought for Cases 2 and 4. For Case 3 perhaps
some tentative linear relationship could be determined, but some measure of confidence
of how this relationship matches with the data values would be desirable. The measure of
the association of variables is called correlation. The most widely used association
relationship is that of a straight-line (linear) fit to data pair observations between a
response variable (y) and an explanatory variable (x). In this section a linear fit approach
will be assumed but in practice, care should be exercised to consider the possibility that
some other form of relationship might be more appropriate.

10.6.2 Regression - least-squares method

Regression is a general term used in data analysis to mean ‘trend’ or ‘pattern’. Many
engineering problems are concerned with determining a relationship between a set of
variables. Even for a strongly linear relationship, such as in Case 2, in practice all data
points are unlikely to align due to random error. Generally, the data points are more
scattered and a more realistic aim would be to obtain a ‘best’ curve through the collection
of all data points and the most used method is to use a least-squares method.

Given a set of data (xq, yy), . . . (x5, ¥;) - - - (x,,, ¥,) consider fitting a straight line y = a
+ bx through the data points so as to achieve some form of ‘best fit’. In practice, if data
values are plotted as illustrated in Figure 10.13 this means adjusting the slope of the line
(parameter b) and the intercept on the y-axis (parameter a) until some form of optimal fit
is achieved.

7] y=a+ bx

(Xns Yn)

Xi X

Figure 10.13 Least squares approximation method.

Calculated values for these parameters can be determined provided a measure of fit is
defined. At any data value x;, the data value is specified as y; and the corresponding
regression curve value is y; = a + bx;; this defines an associated error ¢;=y; — y; = y; —
a — bx,-.
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As the values of a and b are changed, then the error associated with each data point
will change; ‘best values’ for a and b will occur when the errors e; are minimized. A
measure of the global error is given by the sum of squares

n

S:Ze?:;(yi—a—bxi)z

i=1
S = S(a, b) is a function of the two variables a and b, and can be chosen such that S is
minimized.
Applying appropriate calculus for a function of several variables, the result is:
n inyi - in Eyl
nxx 12 —(Zx;)?

b= , a=y —bx

where
_—l . _—l .
x—nle and y—nZy,

These formulae determine the parameters associated with a least squares regression line
as illustrated in a later example.

10.6.3 Correlation coefficient

A measure of the correlation between data values and a linear fit can be obtained as
discussed below, and illustrated in Figure 10.14. At any data value x;, then both a recorded
data value y; and a value y; = a + bx; calculated from the regression formula are available.
An assessment of the closeness of agreement between the data values is obtained from
considering the variations (y; — y;) between the recorded data value and the regression
value at a general data point (x;, y;).

|. Data values |

(xi» ¥)

(yi=yi)

Linear
regression
T i line

X X

Figure 10.14 Calculation of correlation quantities.
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The least-squares method can be shown to have the following properties that are useful
in the following analysis:

(1) The regression line will pass through the point with coordinate (x,y), i.e. pass
through the sample mean values of both x; and y;;

(i1) %(yi -y =-y)=0

It is convenient to use the point (x,y) as a reference point, which from property 1 lies
on the regression line. Any data value y; can then be readily expressed as

i =) =i =3+ =)

as illustrated in Figure 10.14.
The above expression is valid for all data points and squaring and summing over all n
data values, and using property 2 gives a useful expression

n n n
2 22 A =\2
Zl(yi—y) =_2](yi_yi) +_2](Yi—)’)
1= 1= 1=
total unexplained explained
variation variation variation

n
The term X (y; — y)? is called the explained variation and corresponds to a measure
i=1

if all data values were to lie exactly on the regression line. Discrepancies and variations
from data points not lying on the regression line are given by the measure identified as the

n

unexplained variation, and corresponding to the sum 21 (3; — ¥)?%. Clearly the requirement
1=

for good correlation is that the unexplained variation is relatively small, or equally, the
total variation and the explained variation are almost equal. A useful relative measure of
correlation is therefore given by

, _ explained variation _ X (y; —¥)* _ SSR
~ total variation ¥ (y, —y)2  CSS

_ Xi-3)? _ . SSE
Z(yi-y)? CsS

In the above, a number of quantities are determined directly from data values as:
n
CSS = 21 (y; —y)? — computed sum of squares
1=

n

SSR = ;1 (y; — ¥)? — sum of squares due to regression

n

SSE = 21 (y; — y;)* — sum of squares due to errors.
=

The quantity R? is called the coefficient of determination and is a useful measure of the
association between a linear regression line and the data with R? = 1 corresponding to a
perfect fit and R* = 0 corresponds to no dependence between x and y.
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Values for the Case examples following from fitting a least-squares fit can be readily
calculated as:

Case 2: R* =0.95 indicates a very strong correlation between data values;
Case 3: R*> =0.26 indicates that correlation between data values is weak;
Case 4: R*>=0.79 indicates a fair correlation between data values;

Case 5: R*> = 0.00004 indicates little correlation exists;

10.6.4 Example — Case 2 Beam deflection

The ten data values associated with Case 2 are used to provide a regression calculation to
obtain a least-squares fit, calculation of the correlation coefficient and analysis of residuals.
It is convenient to display derived values in a spreadsheet format as follows:

i X; Vi Xj—X (yi =) yi =a+bx; Residual y; — y;
1 100 45 —45 -21.5 43.56 1.44
2 110 52 -35 -14.5 48.66 3.34
3 120 54 -25 -12.5 53.76 0.24
4 130 54 -15 -12.5 58.85 —4.85
5 140 62 -5 —4.5 63.95 -1.95
6 150 68 5 -1.5 69.05 -1.05
7 160 75 15 8.5 74.15 0.85
8 170 75 25 8.5 79.24 —-4.24
9 180 92 35 25.5 84.34 7.66

10 190 88 45 21.5 89.44 -1.44

Derived values associated with the operational formulae used are:

10 10

F= LY, v= LY, =
x—logflx,—145, y_IOEiy’_66'5

10 10 10
__Zl (x; = X)(y; = y) = 4205, ;1 (x; —x)% = 8250, ;1 (y; = y)? =2264.5

Using the given formulae, b = 4205/8250 = 0.510 and a = 66.5 — 0.51*145 = - 7.41.
Hence the least squares linear regression is y = —7.41 + 0.51x. Deflection values y;
obtained from the least-squares analysis are calculated in the spreadsheet together with
residual values (y; — 9;) for information; data values together with the regression curve
are displayed in Figure 10.15.
Corresponding values for correlation quantities are:

CSS =2264.5, SSR =2143.3, SSE = 121.2, giving a value for the correlation coefficient
R? = 0.946.

10.6.5 Analysis of residuals

The starting point for measuring regression error were the quantities e; = y; — y;, which
are called the residuals. These may be usefully considered following a regression analysis
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100 —
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70
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m Data values

Least squares

40

T T T T T T T T T T 1
100 120 140 160 180 200
Applied load

Figure 10.15 Comparison of least-squares linear regression with data values in Case 2 — Beam deflection.

to look at the level of agreement. For example, plotting the residuals for Case 2 is shown

in Figure 10.16. This

shows residuals apparently randomly distributed about the zero

error line; this is typical of data that is consistent with a linear regression.

Residuals

Data number i

Figure 10.16 Plot of residuals from least-squares fit to data in Case 2.

The value of providing a plot of residuals is to identify if the choice of a linear fit (or
other) is appropriate. If residuals follow a distinct trend, then a linear regression curve
may not be appropriate, and a quadratic or other curve may be more appropriate. The
residual curve can also highlight suspect data points (outliers), i.e. values that are distinct
from the rest of the data and may arise from an uncharacteristic operational or measuring
error. These outliers may often need special attention to decide whether they should be
included within the analysis.
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10.6.6 Extension to multivariate

In many practical cases, a dependant variable y may depend upon more than one independent
variable, i.e. y =f (xq, x, . . . x,,). A direct extension to the regression analysis is available
to obtain a least squares linear fit of the form y = o + ot;x; + . . . o,,x,, to the data.

In this case, analysis is best carried out using matrix algebra. Also as drawing a
scattergram is not feasible, analysis of the level of fit is conducted through looking at the
residuals and the values of the appropriate correlation coefficient. Details will not be
covered within this chapter.

10.6.7 Fit of regression curves and confidence lines

Hypothesis testing techniques can also be used to test if a linear regression obtained to a
set of data points is acceptable to a given significance. We have already seen that if R?,
the coefficient of determination is close to a value of 1, then a close fit (i.e. good correlation)
is expected.

It can be shown that the quantity

RZ/VI

=———vi=m and vy, =n-(m+1
a_ R, ! 2 ( )

is distributed as an F-variate, F;,, ,,; where n is the number of data points and m = 2 for
a linear fit.

Estimation techniques can be applied to linear regression analysis using the 7-distribution
with respect to confidence limits to the two parameters a and b for a linear fit. This gives
rise to associated confidence limit values for each data value and joining these values
produces confidence lines.

10.7 Statistical formulae and tables

Selected statistical formulae:

Ox
Oy =——
X~ In
6i o)
Oy v = .—+—
Xi-X2 n n,
(n = )s{ +(ny = 1)s3
A 1 1 2 _ U Sp + U 52
G,=58, . |—+—— where s, =
n ny ng + ny — 2
;= observed difference in means
G,
o}
F=—[where 6, > 0)]
03
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CSS = 21 (yi = ¥)?
SSE = X (yi =3’
1=

- nXx;yi—2x; XY;

aniz — (X x;)?
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Statistical Table 10.2 Critical values of the #-distribution

Statistical analysis techniques in ACT

The table gives the values of 1., the 040 14
critical values for a significance level of 0.35 (2)
o in the upper tail of the distribution. ’
The z-distribution having v degrees of
freedom. 0.30
Critical values for the lower tail is
given by —f,., (symmetry). 0.25
For critical values of |71, corresponding /
to a two-tailed region, the column headings  0.20 fig)
for oo must be doubled.
Table values given from the Excel (.15
function TINV \
0.10
N
0.05
o
0.00 f t
-4 -2 0 z-axis
ANCES 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
1 3.078 6.314 1.000 31.821 636.578 318.29 636.58
2 1.886 2.920 0.816 6.965 31.600 22.328 31.600
3 1.638 2.353 0.765 4.541 12.924 10.214 12.924
4 1.533 2.132 0.741 3.747 8.610 7.173 8.610
5 1.476 2.015 0.727 3.365 6.869 5.894 6.869
6 1.440 1.943 0.718 3.143 5.959 5.208 5.959
7 1.415 1.895 0.711 2.998 5.408 4.785 5.408
8 1.397 1.860 0.706 2.896 5.041 4.501 5.041
9 1.383 1.833 0.703 2.821 4.781 4.297 4.781
10 1.372 1.812 0.700 2.764 4.587 4.144 4.587
11 1.363 1.796 0.697 2.718 4.437 4.025 4.437
12 1.356 1.782 0.695 2.681 4.318 3.930 4.318
13 1.350 1.771 0.694 2.650 4.221 3.852 4.221
14 1.345 1.761 0.692 2.624 4.140 3.787 4.140
15 1.341 1.753 0.691 2.602 4.073 3.733 4.073
16 1.337 1.746 0.690 2.583 4.015 3.686 4.015
17 1.333 1.740 0.689 2.567 3.965 3.646 3.965
18 1.330 1.734 0.688 2.552 3.922 3.610 3.922
19 1.328 1.729 0.688 2.539 3.883 3.579 3.883
20 1.325 1.725 0.687 2.528 3.850 3.552 3.850
21 1.323 1.721 0.686 2.518 3.819 3.527 3.819
22 1.321 1.717 0.686 2.508 3.792 3.505 3.792
23 1.319 1.714 0.685 2.500 3.768 3.485 3.768
24 1.318 1.711 0.685 2.492 3.745 3.467 3.745
25 1.316 1.708 0.684 2.485 3.725 3.450 3.725
26 1.315 1.706 0.684 2.479 3.707 3.435 3.707
27 1.314 1.703 0.684 2.473 3.689 3.421 3.689
28 1.313 1.701 0.683 2.467 3.674 3.408 3.674
29 1.311 1.699 0.683 2.462 3.660 3.396 3.660
30 1.310 1.697 0.683 2.457 3.646 3.385 3.646
40 1.303 1.684 0.681 2423 3.551 3.307 3.551
60 1.296 1.671 0.679 2.390 3.460 3.232 3.460
120 1.289 1.658 0.677 2.358 3.373 3.160 3.373
oo 1.282 1.645 0.675 2.327 3.291 3.091 3.291
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