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Chapter 11

Simple Linear Regression and
Correlation

11.1 Introduction to Linear Regression

Often, in practice, one is called upon to solve problems involving sets of variables
when it is known that there exists some inherent relationship among the variables.
For example, in an industrial situation it may be known that the tar content in the
outlet stream in a chemical process is related to the inlet temperature. It may be
of interest to develop a method of prediction, that is, a procedure for estimating
the tar content for various levels of the inlet temperature from experimental infor-
mation. Now, of course, it is highly likely that for many example runs in which
the inlet temperature is the same, say 130°C, the outlet tar content will not be the
same. This is much like what happens when we study several automobiles with
the same engine volume. They will not all have the same gas mileage. Houses in
the same part of the country that have the same square footage of living space
will not all be sold for the same price. Tar content, gas mileage (mpg), and the
price of houses (in thousands of dollars) are natural dependent variables, or
responses, in these three scenarios. Inlet temperature, engine volume (cubic feet),
and square feet of living space are, respectively, natural independent variables,
or regressors. A reasonable form of a relationship between the response Y and

the regressor x is the linear relationship

Y =By + Bz,

where, of course, By is the intercept and [; is the slope. The relationship is

illustrated in Figure 11.1.

If the relationship is exact, then it is a deterministic relationship between
two scientific variables and there is no random or probabilistic component to it.
However, in the examples listed above, as well as in countless other scientific and
engineering phenomena, the relationship is not deterministic (i.e., a given = does
not always give the same value for V). As a result, important problems here
are probabilistic in nature since the relationship above cannot be viewed as being
exact. The concept of regression analysis deals with finding the best relationship
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}ﬁo

Figure 11.1: A linear relationship; 5y: intercept; (31: slope.

between Y and z, quantifying the strength of that relationship, and using methods
that allow for prediction of the response values given values of the regressor x.

In many applications, there will be more than one regressor (i.e., more than
one independent variable that helps to explain Y). For example, in the case
where the response is the price of a house, one would expect the age of the house
to contribute to the explanation of the price, so in this case the multiple regression
structure might be written

Y = Bo + Bix1 + Bazxa,

where Y is price, x; is square footage, and x5 is age in years. In the next chap-
ter, we will consider problems with multiple regressors. The resulting analysis
is termed multiple regression, while the analysis of the single regressor case is
called simple regression. As a second illustration of multiple regression, a chem-
ical engineer may be concerned with the amount of hydrogen lost from samples
of a particular metal when the material is placed in storage. In this case, there
may be two inputs, storage time x; in hours and storage temperature x5 in degrees
centigrade. The response would then be hydrogen loss Y in parts per million.

In this chapter, we deal with the topic of simple linear regression, treating
only the case of a single regressor variable in which the relationship between y and
x is linear. For the case of more than one regressor variable, the reader is referred to
Chapter 12. Denote a random sample of size n by the set {(z;,v;); i =1,2,...,n}.
If additional samples were taken using exactly the same values of x, we should
expect the y values to vary. Hence, the value y; in the ordered pair (z;,y;) is a
value of some random variable Y;.

11.2 The Simple Linear Regression (SLR) Model

We have already confined the terminology regression analysis to situations in which
relationships among variables are not deterministic (i.e., not exact). In other words,
there must be a random component to the equation that relates the variables.
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This random component takes into account considerations that are not being mea-
sured or, in fact, are not understood by the scientists or engineers. Indeed, in most
applications of regression, the linear equation, say Y = 8y + Sz, is an approxima-
tion that is a simplification of something unknown and much more complicated.
For example, in our illustration involving the response Y= tar content and z =
inlet temperature, Y = Sy + Sz is likely a reasonable approximation that may be
operative within a confined range on x. More often than not, the models that are
simplifications of more complicated and unknown structures are linear in nature
(i.e., linear in the parameters By and ; or, in the case of the model involving the
price, size, and age of the house, linear in the parameters Sy, 81, and 32). These
linear structures are simple and empirical in nature and are thus called empirical
models.

An analysis of the relationship between Y and x requires the statement of a
statistical model. A model is often used by a statistician as a representation of
an ideal that essentially defines how we perceive that the data were generated by
the system in question. The model must include the set {(x;,v;); ¢ = 1,2,...,n}
of data involving n pairs of (z,y) values. One must bear in mind that the value y;
depends on x; via a linear structure that also has the random component involved.
The basis for the use of a statistical model relates to how the random variable
Y moves with z and the random component. The model also includes what is
assumed about the statistical properties of the random component. The statistical
model for simple linear regression is given below. The response Y is related to the
independent variable x through the equation

Simple Linear
Regression Model

Y =00+ Bz +e

In the above, By and 7 are unknown intercept and slope parameters, respectively,
and € is a random variable that is assumed to be distributed with E(¢) = 0 and
Var(e) = 0. The quantity o2 is often called the error variance or residual variance.

From the model above, several things become apparent. The quantity Y is
a random variable since € is random. The value x of the regressor variable is
not random and, in fact, is measured with negligible error. The quantity €, often
called a random error or random disturbance, has constant variance. This
portion of the assumptions is often called the homogeneous variance assump-
tion. The presence of this random error, €, keeps the model from becoming simply
a deterministic equation. Now, the fact that E(e¢) = 0 implies that at a specific
x the y-values are distributed around the true, or population, regression line
y = Bo + Pix. If the model is well chosen (i.e., there are no additional important
regressors and the linear approximation is good within the ranges of the data),
then positive and negative errors around the true regression are reasonable. We
must keep in mind that in practice 8y and 8y are not known and must be estimated
from data. In addition, the model described above is conceptual in nature. As a
result, we never observe the actual € values in practice and thus we can never draw
the true regression line (but we assume it is there). We can only draw an estimated
line. Figure 11.2 depicts the nature of hypothetical (x,y) data scattered around a
true regression line for a case in which only n = 5 observations arc available. Let
us emphasize that what we see in Figure 11.2 is not the line that is used by the
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scientist or engineer. Rather, the picture merely describes what the assumptions
mean! The regression that the user has at his or her disposal will now be described.

® “True” Regression Line
E(Y)=Bo+Bx

X

Figure 11.2: Hypothetical (x,y) data scattered around the true regression line for
n =>5.

The Fitted Regression Line

An important aspect of regression analysis is, very simply, to estimate the parame-
ters By and B (i.e., estimate the so-called regression coefficients). The method
of estimation will be discussed in the next section. Suppose we denote the esti-
mates by for By and b; for B;. Then the estimated or fitted regression line is
given by

g:b0+b1$,

where ¢ is the predicted or fitted value. Obviously, the fitted line is an estimate
of the true regression line. We expect that the fitted line should be closer to the
true regression line when a large amount of data are available. In the following
example, we illustrate the fitted line for a real-life pollution study.

One of the more challenging problems confronting the water pollution control
field is presented by the tanning industry. Tannery wastes are chemically complex.
They are characterized by high values of chemical oxygen demand, volatile solids,
and other pollution measures. Consider the experimental data in Table 11.1, which
were obtained from 33 samples of chemically treated waste in a study conducted
at Virginia Tech. Readings on z, the percent reduction in total solids, and y, the
percent reduction in chemical oxygen demand, were recorded.

The data of Table 11.1 are plotted in a scatter diagram in Figure 11.3. From
an inspection of this scatter diagram, it can be seen that the points closely follow a
straight line, indicating that the assumption of linearity between the two variables
appears to be reasonable.
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Table 11.1: Measures of Reduction in Solids and Oxygen Demand

Solids Reduction, Oxygen Demand | Solids Reduction, Oxygen Demand
x (%) Reduction, y (%) z (%) Reduction, y (%)

3 5 36 34

7 11 37 36

11 21 38 38

15 16 39 37

18 16 39 36

27 28 39 45

29 27 40 39
30 25 41 41
30 35 42 40
31 30 42 44

31 40 43 37

32 32 44 44

33 34 45 46

33 32 46 46

34 34 47 49

36 37 50 51

36 38

y
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Figure 11.3: Scatter diagram with regression lines.

The fitted regression line and a hypothetical true regression line are shown on
the scatter diagram of Figure 11.3. This example will be revisited as we move on
to the method of estimation, discussed in Section 11.3.



394 Chapter 11 Simple Linear Regression and Correlation

Another Look at the Model Assumptions

It may be instructive to revisit the simple linear regression model presented previ-
ously and discuss in a graphical sense how it relates to the so-called true regression.
Let us expand on Figure 11.2 by illustrating not merely where the ¢; fall on a graph
but also what the implication is of the normality assumption on the ¢;.

Suppose we have a simple linear regression with n = 6 evenly spaced values of z
and a single y-value at each x. Consider the graph in Figure 11.4. This illustration
should give the reader a clear representation of the model and the assumptions
involved. The line in the graph is the true regression line. The points plotted
are actual (y,x) points which are scattered about the line. Each point is on its
own normal distribution with the center of the distribution (i.e., the mean of y)
falling on the line. This is certainly expected since E(Y) = By + f1x. As a result,
the true regression line goes through the means of the response, and the
actual observations are on the distribution around the means. Note also that all
distributions have the same variance, which we referred to as o2. Of course, the
deviation between an individual y and the point on the line will be its individual
e value. This is clear since

yi — E(Y;) = yi — (Bo + Bixi) = €.

Thus, at a given z, Y and the corresponding € both have variance o2.

Figure 11.4: Individual observations around true regression line.

Note also that we have written the true regression line here as py |, = Bo + f12
in order to reaffirm that the line goes through the mean of the Y random variable.

11.3 Least Squares and the Fitted Model

In this section, we discuss the method of fitting an estimated regression line to
the data. This is tantamount to the determination of estimates by for By and by
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for B1. This of course allows for the computation of predicted values from the
fitted line § = by + bz and other types of analyses and diagnostic information
that will ascertain the strength of the relationship and the adequacy of the fitted
model. Before we discuss the method of least squares estimation, it is important
to introduce the concept of a residual. A residual is essentially an error in the fit
of the model § = by + by x.

Residual: Error in Given a set of regression data {(z;,y;);7 = 1,2,...,n} and a fitted model, y; =
Fit bg + byx;, the ith residual e; is given by

Bi:yi—ﬂi, i:1,2,...,n.

Obviously, if a set of n residuals is large, then the fit of the model is not good.
Small residuals are a sign of a good fit. Another interesting relationship which is
useful at times is the following:

yi = by + bi1x; + €;.

The use of the above equation should result in clarification of the distinction be-
tween the residuals, e;, and the conceptual model errors, ¢;. One must bear in
mind that whereas the ¢; are not observed, the e; not only are observed but also
play an important role in the total analysis.

Figure 11.5 depicts the line fit to this set of data, namely § = by + b1z, and the
line reflecting the model uy |, = Bo + B1z. Now, of course, By and $; are unknown
parameters. The fitted line is an estimate of the line produced by the statistical
model. Keep in mind that the line py |, = Bo + S17 is not known.

y
(XI" yl) }/>= b0+b1X

#Y]x=ﬁo+ﬂ1x

Figure 11.5: Comparing ¢; with the residual, e;.

The Method of Least Squares

We shall find by and by, the estimates of 5y and 1, so that the sum of the squares
of the residuals is a minimum. The residual sum of squares is often called the sum
of squares of the errors about the regression line and is denoted by SSFE. This
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minimization procedure for estimating the parameters is called the method of
least squares. Hence, we shall find a and b so as to minimize

n

SSE = Ze —Z — §;)° :Z(yz‘—bo—bﬂi)Q-

i=1 i=1
Differentiating SSFE Wlth respect to by and by, we have

M a(SSE

= —22 '—bo—blxi), —_— = —22 '—bo—blxi).ﬂfi.

Settlng the partlal derlvatives equal to zero and rearranglng the terms, we obtain
the equations (called the normal equations)

n n n n n
nb0+blzxi22yi, bozxi+b1zwgzzxi%,
i=1 i1 i—1 i=1 i—1

which may be solved simultancously to yield computing formulas for by and b.

Estimating the Given the sample {(z;,y;); ¢ = 1,2,...,n}, the least squares estimates by and b;
Regression of the regression coefficients 5y and S, are computed from the formulas
Coefficients

03" o - (z )(Zy) 32w - )

bl = ! ! = - and

by = =L n“ =7 —bZ.

The calculations of by and by, using the data of Table 11.1, are illustrated by the
following example.

Example 11.1:‘ Estimate the regression line for the pollution data of Table 11.1.

Solution: 33 33 33 33
D wp=1104, ) y;=1124, Y my; = 41,355, Y a7 = 41,086
i=1 i=1 i=1 i=1
Therefore,

(33)(41,355) — (1104)(1124)
(33)(41,086) — (1104)2
1124 — (0.903643)(1104)
33

by = = 0.903643 and

bo =

= 3.829633.
Thus, the estimated regression line is given by

y = 3.8296 + 0.9036. 1

Using the regression line of Example 11.1, we would predict a 31% reduction
in the chemical oxygen demand when the reduction in the total solids is 30%. The
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31% reduction in the chemical oxygen demand may be interpreted as an estimate
of the population mean py 39 or as an estimate of a new observation when the
reduction in total solids is 30%. Such estimates, however, are subject to error.
Even if the experiment were controlled so that the reduction in total solids was
30%, it is unlikely that we would measure a reduction in the chemical oxygen
demand exactly equal to 31%. In fact, the original data recorded in Table 11.1
show that measurements of 25% and 35% were recorded for the reduction in oxygen
demand when the reduction in total solids was kept at 30%.

What Is Good about Least Squares?

It should be noted that the least squares criterion is designed to provide a fitted
line that results in a “closeness” between the line and the plotted points. There
are many ways of measurmg closeness. For example, one may wish to determine by

and by for which Z |y; — ¥;| is minimized or for which Z ly; — 9;|*° is minimized.

These are both Viable and reasonable methods. Note Zthlat both of these, as well
as the least squares procedure, result in forcing residuals to be “small” in some
sense. One should remember that the residuals are the empirical counterpart to
the € values. Figure 11.6 illustrates a set of residuals. One should note that the
fitted line has predicted values as points on the line and hence the residuals are
vertical deviations from points to the line. As a result, the least squares procedure
produces a line that minimizes the sum of squares of vertical deviations
from the points to the line.

Figure 11.6: Residuals as vertical deviations.
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Exercises

11.1 A study was conducted at Virginia Tech to de-
termine if certain static arm-strength measures have
an influence on the “dynamic lift” characteristics of an
individual. Twenty-five individuals were subjected to
strength tests and then were asked to perform a weight-
lifting test in which weight was dynamically lifted over-
head. The data are given here.

Arm Dynamic

Individual Strength, x Lift, y
1 17.3 1.7
2 19.3 48.3
3 19.5 88.3
4 19.7 75.0
5 22.9 91.7
6 23.1 100.0
7 26.4 73.3
8 26.8 65.0
9 27.6 75.0
10 28.1 88.3
11 28.2 68.3
12 28.7 96.7
13 29.0 76.7
14 29.6 78.3
15 29.9 60.0
16 29.9 71.7
17 30.3 85.0
18 31.3 85.0
19 36.0 88.3
20 39.5 100.0
21 40.4 100.0
22 44.3 100.0
23 44.6 91.7
24 50.4 100.0
25 55.9 TL.7

(a) Estimate Bo and (1 for the linear regression curve
By |z = 50 + 6111;-
(b) Find a point estimate of jy 3.

(c) Plot the residuals versus the z’s (arm strength).
Comment.

11.2 The grades of a class of 9 students on a midterm
report (z) and on the final examination (y) are as fol-
lows:

ZL‘|77 50 71 72 81 94 96 99 67
y | 82 66 78 34 47 85 99 99 68

(a) Estimate the linear regression line.

(b) Estimate the final examination grade of a student
who received a grade of 85 on the midterm report.

11.3 The amounts of a chemical compound y that dis-
solved in 100 grams of water at various temperatures
x were recorded as follows:

Chapter 11 Simple Linear Regression and Correlation

xz (°C) y (grams)
0 8 6 8
15 12 10 14
30 25 21 24
45 31 33 28
60 44 39 42
75 48 51 44

(a) Find the equation of the regression line.

(

(¢) Estimate the amount of chemical that will dissolve
in 100 grams of water at 50°C.

b) Graph the line on a scatter diagram.

11.4 The following data were collected to determine
the relationship between pressure and the correspond-
ing scale reading for the purpose of calibration.

Pressure, z (Ib/sq in.) Scale Reading, y

10 13
10 18
10 16
10 15
10 20
50 86
50 90
50 88
50 88
50 92

(a) Find the equation of the regression line.

(b) The purpose of calibration in this application is to
estimate pressure from an observed scale reading.
Estimate the pressure for a scale reading of 54 using

& = (54 — bo) /by

11.5 A study was made on the amount of converted
sugar in a certain process at various temperatures. The
data were coded and recorded as follows:

Temperature, x Converted Sugar, y

1.0 8.1
1.1 7.8
1.2 8.5
1.3 9.8
14 9.5
1.5 8.9
1.6 8.6
1.7 10.2
1.8 9.3
1.9 9.2
2.0 10.5

(a) Estimate the linear regression line.

(b) Estimate the mean amount of converted sugar pro-
duced when the coded temperature is 1.75.

(c) Plot the residuals versus temperature. Comment.



