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Chapter 13

One-Factor Experiments: General

13.1 Analysis-of-Variance Technique

In the estimation and hypothesis testing material covered in Chapters 9 and 10, we
were restricted in each case to considering no more than two population parameters.
Such was the case, for example, in testing for the equality of two population means
using independent samples from normal populations with common but unknown
variance, where it was necessary to obtain a pooled estimate of 2.

This material dealing in two-sample inference represents a special case of what
we call the one-factor problem. For example, in Exercise 10.35 on page 357, the
survival time was measured for two samples of mice, where one sample received a
new serum for leukemia treatment and the other sample received no treatment. In
this case, we say that there is one factor, namely treatment, and the factor is at two
levels. If several competing treatments were being used in the sampling process,
more samples of mice would be necessary. In this case, the problem would involve
one factor with more than two levels and thus more than two samples.

In the k > 2 sample problem, it will be assumed that there are k£ samples from
k populations. One very common procedure used to deal with testing population
means is called the analysis of variance, or ANOVA.

The analysis of variance is certainly not a new technique to the reader who
has followed the material on regression theory. We used the analysis-of-variance
approach to partition the total sum of squares into a portion due to regression and
a portion due to error.

Suppose in an industrial experiment that an engineer is interested in how the
mean absorption of moisture in concrete varies among 5 different concrete aggre-
gates. The samples are exposed to moisture for 48 hours. It is decided that 6
samples are to be tested for each aggregate, requiring a total of 30 samples to be
tested. The data are recorded in Table 13.1.

The model for this situation may be set up as follows. There are 6 observations
taken from each of 5 populations with means uq, uo, ..., us, respectively. We may
wish to test

Ho: pn = po = -+ = pis,
H,: At least two of the means are not equal.

007
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Table 13.1: Absorption of Moisture in Concrete Aggregates

Aggregate: 1 2 3 4 5

551 995 639 417 563
457 580 615 449 631
450 508 511 017 522
731 583 o973 438 613
499 633 648 415 656
632 017 677 555 679

Total 3320 3416 3663 2791 3664 16,854
Mean 553.33 569.33 610.50 465.17 610.67 561.80

In addition, we may be interested in making individual comparisons among these
5 population means.

Two Sources of Variability in the Data

In the analysis-of-variance procedure, it is assumed that whatever variation exists
among the aggregate averages is attributed to (1) variation in absorption among
observations within aggregate types and (2) variation among aggregate types, that
is, due to differences in the chemical composition of the aggregates. The within-
aggregate variation is, of course, brought about by various causes. Perhaps
humidity and temperature conditions were not kept entirely constant throughout
the experiment. It is possible that there was a certain amount of heterogeneity in
the batches of raw materials that were used. At any rate, we shall consider the
within-sample variation to be chance or random variation. Part of the goal of
the analysis of variance is to determine if the differences among the 5 sample means
are what we would expect due to random variation alone or, rather, due to variation
beyond merely random effects, i.e., differences in the chemical composition of the
aggregates.

Many pointed questions appear at this stage concerning the preceding problem.
For example, how many samples must be tested for each aggregate? This is a
question that continually haunts the practitioner. In addition, what if the within-
sample variation is so large that it is difficult for a statistical procedure to detect
the systematic differences?” Can we systematically control extraneous sources of
variation and thus remove them from the portion we call random variation? We
shall attempt to answer these and other questions in the following sections.

13.2 The Strategy of Experimental Design

In Chapters 9 and 10, the notions of estimation and testing for the two-sample
case were covered under the important backdrop of the way the experiment is con-
ducted. This falls into the broad category of design of experiments. For example,
for the pooled t-test discussed in Chapter 10, it is assumed that the factor levels
(treatments in the mice example) are assigned randomly to the experimental units
(mice). The notion of experimental units was discussed in Chapters 9 and 10 and
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illustrated through examples. Simply put, experimental units are the units (mice,
patients, concrete specimens, time) that provide the heterogeneity that leads
to experimental error in a scientific investigation. The random assignment elim-
inates bias that could result with systematic assignment. The goal is to distribute
uniformly among the factor levels the risks brought about by the heterogeneity of
the experimental units. Random assignment best simulates the conditions that are
assumed by the model. In Section 13.7, we discuss blocking in experiments. The
notion of blocking was presented in Chapters 9 and 10, when comparisons between
means were accomplished with pairing, that is, the division of the experimental
units into homogeneous pairs called blocks. The factor levels or treatments are
then assigned randomly within blocks. The purpose of blocking is to reduce the
effective experimental error. In this chapter, we naturally extend the pairing to
larger block sizes, with analysis of variance being the primary analytical tool.

13.3 One-Way Analysis of Variance:
Completely Randomized Design (One-Way ANOVA)

Random samples of size n are selected from each of k populations. The k differ-
ent populations are classified on the basis of a single criterion such as different
treatments or groups. Today the term treatment is used generally to refer to
the various classifications, whether they be different aggregates, different analysts,
different fertilizers, or different regions of the country.

Assumptions and Hypotheses in One-Way ANOVA

It is assumed that the k populations are independent and normally distributed
with means pi, pia, . . ., g and common variance o2. As indicated in Section 13.2,
these assumptions are made more palatable by randomization. We wish to derive
appropriate methods for testing the hypothesis

Ho: py = po =+ = g,
Hy: At least two of the means are not equal.

Let y;; denote the jth observation from the ith treatment and arrange the data as
in Table 13.2. Here, Y; is the total of all observations in the sample from the ith
treatment, ;. is the mean of all observations in the sample from the ith treatment,
Y  is the total of all nk observations, and ¢ is the mean of all nk observations.

Model for One-Way ANOVA

Each observation may be written in the form
Yij = wi + iy,

where ¢€;; measures the deviation of the jth observation of the ith sample from the
corresponding treatment mean. The ¢;;-term represents random error and plays
the same role as the error terms in the regression models. An alternative and
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Table 13.2: k¥ Random Samples
Treatment: 1 2 ... T e k

Y11 Y21 e Yil e Yk1

Y12 Y22 T Yi2 e Yk2

Yin Yon e Yin e Ykn
Total Y, Yoo - Y, - Y, Y.
Mean yi. Y2, o Yoo o Yk Y

preferred form of this equation is obtained by substituting u; = 1 + «;, subject to
k

the constraint > «; = 0. Hence, we may write
i=1

Yij = 1+ o6 + €5,

where p is just the grand mean of all the pu;, that is,

k
Zm,
i=1

and «; is called the effect of the ith treatment.

The null hypothesis that the k population means are equal against the alter-
native that at least two of the means are unequal may now be replaced by the
equivalent hypothesis

| =

M:

H(): a1:a2:"':ak:0,

Hy: At least one of the «; is not equal to zero.

Resolution of Total Variability into Components

Theorem 13.1:

Our test will be based on a comparison of two independent estimates of the common
population variance o2. These estimates will be obtained by partitioning the total
variability of our data, designated by the double summation

ZZ(%;‘ -7.)%

i=1 j=1
into two components.
Sum-of-Squares Identity
k n k kK n
SN Wi -0 =n> @ -7+ D] (v — )
i=1 j=1 i=1 i=1 j=1

It will be convenient in what follows to identify the terms of the sum-of-squares
identity by the following notation:
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Three Important
Measures of
Variability

Theorem 13.2:

k n
SST = Z Z(y” — 7..)%> = total sum of squares,
i=1 j=1
k
SSA = nZ(gjl — 7..)%> = treatment sum of squares,
i=1
k n
SSE = Z Z(y” — yi_)Q = error sum of squares.
i=1 j=1

The sum-of-squares identity can then be represented symbolically by the equation
SST =SSA+ SSE.

The identity above expresses how between-treatment and within-treatment
variation add to the total sum of squares. However, much insight can be gained by
investigating the expected value of both SSA and SSE. Eventually, we shall
develop variance estimates that formulate the ratio to be used to test the equality
of population means.

k
E(SSA)=(k—1)o>+n) af
1=1

The proof of the theorem is left as an exercise (see Review Exercise 13.53 on page
556).

If Hy is true, an estimate of o2, based on k — 1 degrees of freedom, is provided
by this expression:

Treatment Mean
Square

SSA

2 _
TR

If Hy is true and thus each «; in Theorem 13.2 is equal to zero, we see that
SSA
E|l— ) =2
k—1

and s? is an unbiased estimate of o2. However, if H; is true, we have

k
SSAN 5 n 9
E(—k—l) =0 +—k_1Zai,

and s? estimates o2 plus an additional term, which measures variation due to the
systematic effects.

A second and independent estimate of 02, based on k(n—1) degrees of freedom,
is this familiar formula:

Frror Mean
Square

9 SSE
2 = 2P~
k(n—1)
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It is instructive to point out the importance of the expected values of the mean
squares indicated above. In the next section, we discuss the use of an F-ratio with
the treatment mean square residing in the numerator. It turns out that when H;
is true, the presence of the condition E(s?) > E(s?) suggests that the Flratio be
used in the context of a one-sided upper-tailed test. That is, when H; is true,
we would expect the numerator s? to exceed the denominator.

Use of F-Test in ANOVA

The estimate s? is unbiased regardless of the truth or falsity of the null hypothesis
(see Review Exercise 13.52 on page 556). It is important to note that the sum-of-
squares identity has partitioned not only the total variability of the data, but also
the total number of degrees of freedom. That is,

nk—1=k—1+k(n-1).

F-Ratio for Testing Equality of Means

When Hy is true, the ratio f = s7/s? is a value of the random variable F having the
F-distribution with k—1 and k(n — 1) degrees of freedom (see Theorem 8.8). Since
s? overestimates 02 when Hj is false, we have a one-tailed test with the critical
region entirely in the right tail of the distribution.

The null hypothesis Hy is rejected at the a-level of significance when

f > fa[k - 1,]{7(71— 1)]

Another approach, the P-value approach, suggests that the evidence in favor of
or against Hj is

P=P{flk—1,k(n—1)]> f}

The computations for an analysis-of-variance problem are usually summarized in
tabular form, as shown in Table 13.3.

Table 13.3: Analysis of Variance for the One-Way ANOVA

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f
SSA 2
Treatments SSA E—1 52 = p— %
SSE
Error SSE k(n—1) s? = K1)
Total SST kn —1
Example 13.1:] Test the hypothesis pu; = ps = - - - = pus at the 0.05 level of significance for the data

of Table 13.1 on absorption of moisture by various types of cement aggregates.
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Solution: The hypotheses are
Ho: py = pg =+ = ps,
Hy: At least two of the means are not equal.
a = 0.05.
Critical region: f > 2.76 with vy = 4 and vy = 25 degrees of freedom. The

sum-of-squares computations give
SST = 209,377, SSA =85,356,
SSE = 209,377 — 85,356 = 124,021.

These results and the remaining computations are exhibited in Figure 13.1 in the

SAS ANOVA procedure.

The GLM Procedure

Dependent Variable: moisture

Sum of

Source DF Squares Mean Square F Value Pr > F
Model 4 85356 .4667 21339.1167 4.30 0.0088
Error 25 124020.3333 4960.8133
Corrected Total 29 209376 .8000

R-Square Coeff Var Root MSE moisture Mean

0.407669 12.53703 70.43304 561.8000
Source DF Type I SS Mean Square F Value Pr > F
aggregate 4 85356.46667 21339.11667 4.30 0.0088

Figure 13.1: SAS output for the analysis-of-variance procedure.

Decision: Reject Hy and conclude that the aggregates do not have the same mean
absorption. The P-value for f = 4.30 is 0.0088, which is smaller than 0.05. A

In addition to the ANOVA, a box plot was constructed for each aggregate. The
plots are shown in Figure 13.2. From these plots it is evident that the absorption
is not the same for all aggregates. In fact, it appears as if aggregate 4 stands out
from the rest. A more formal analysis showing this result will appear in Exercise
13.21 on page 531.

During experimental work, one often loses some of the desired observations.
Experimental animals may die, experimental material may be damaged, or human
subjects may drop out of a study. The previous analysis for equal sample size will
still be valid if we slightly modify the sum of squares formulas. We now assume
the k£ random samples to be of sizes ny,ns,...,ng, respectively.

Sum of Squares,
Unequal Sample
Sizes

, SSE=55T - SSA

SST = ZZ vij — .)°, SSA = an -

i=1 j=1




