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Chapter 14

Factorial Experiments
(Two or More Factors)

14.1

Introduction

Consider a situation where it is of interest to study the effects of two factors, A
and B, on some response. For example, in a chemical experiment, we would like to
vary simultaneously the reaction pressure and reaction time and study the effect
of each on the yield. In a biological experiment, it is of interest to study the effects
of drying time and temperature on the amount of solids (percent by weight) left in
samples of yeast. As in Chapter 13, the term factor is used in a general sense to
denote any feature of the experiment such as temperature, time, or pressure that
may be varied from trial to trial. We define the levels of a factor to be the actual
values used in the experiment.

For each of these cases, it is important to determine not only if each of the two
factors has an influence on the response, but also if there is a significant interaction
between the two factors. As far as terminology is concerned, the experiment de-
scribed here is a two-factor experiment and the experimental design may be either
a completely randomized design, in which the various treatment combinations are
assigned randomly to all the experimental units, or a randomized complete block
design, in which factor combinations are assigned randomly within blocks. In the
case of the yeast example, the various treatment combinations of temperature and
drying time would be assigned randomly to the samples of yeast if we were using
a completely randomized design.

Many of the concepts studied in Chapter 13 are extended in this chapter to two
and three factors. The main thrust of this material is the use of the completely
randomized design with a factorial experiment. A factorial experiment in two
factors involves experimental trials (or a single trial) with all factor combinations.
For example, in the temperature-drying-time example with, say, 3 levels of each
and n = 2 runs at each of the 9 combinations, we have a two-factor factorial
experiment in a completely randomized design. Neither factor is a blocking factor;
we are interested in how each influences percent solids in the samples and whether
or not they interact. The biologist would have available 18 physical samples of
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material which are experimental units. These would then be assigned randomly to
the 18 combinations (9 treatment combinations, each duplicated).

Before we launch into analytical details, sums of squares, and so on, it may
be of interest for the reader to observe the obvious connection between what we
have described and the situation with the one-factor problem. Consider the yeast
experiment. Explanation of degrees of freedom aids the reader or the analyst in
visualizing the extension. We should initially view the 9 treatment combinations
as if they represented one factor with 9 levels (8 degrees of freedom). Thus, an
initial look at degrees of freedom gives

Treatment combinations 8
Error 9
Total 17

Main Effects and Interaction

The experiment could be analyzed as described in the above table. However, the
F-test for combinations would probably not give the analyst the information he or
she desires, namely, that which considers the role of temperature and drying time.
Three drying times have 2 associated degrees of freedom; three temperatures have
2 degrees of freedom. The main factors, temperature and drying time, are called
main effects. The main effects represent 4 of the 8 degrees of freedom for factor
combinations. The additional 4 degrees of freedom are associated with interaction
between the two factors. As a result, the analysis involves

Combinations 8
Temperature 2
Drying time 2
Interaction 4

Error 9

Total 17

Recall from Chapter 13 that factors in an analysis of variance may be viewed
as fixed or random, depending on the type of inference desired and how the levels
were chosen. Here we must consider fixed effects, random effects, and even cases
where effects are mixed. Most attention will be directed toward expected mean
squares when we advance to these topics. In the following section, we focus on the
concept of interaction.

14.2 Interaction in the Two-Factor Experiment

In the randomized block model discussed previously, it was assumed that one
observation on each treatment is taken in each block. If the model assumption is
correct, that is, if blocks and treatments are the only real effects and interaction
does not exist, the expected value of the mean square error is the experimental
error variance o2. Suppose, however, that there is interaction occurring between
treatments and blocks as indicated by the model

Yij =+ a; + B+ (aB)ij + €y
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of Section 13.8. The expected value of the mean square error is then given as

k b
]_g +(b—1 k—1) ZZO‘B”

The treatment and block effects do not appear in the expected mean square error,
but the interaction effects do. Thus, if there is interaction in the model, the
mean square error reflects variation due to experimental error plus an interaction
contribution, and for this experimental plan, there is no way of separating them.

SSE
b [(b—l)(k—l)

Interaction and the Interpretation of Main Effects

From an experimenter’s point of view it should seem necessary to arrive at a
significance test on the existence of interaction by separating true error variation
from that due to interaction. The main effects, A and B, take on a different
meaning in the presence of interaction. In the previous biological example, the
effect that drying time has on the amount of solids left in the yeast might very well
depend on the temperature to which the samples are exposed. In general, there
could be experimental situations in which factor A has a positive effect on the
response at one level of factor B, while at a different level of factor B the effect of
A is negative. We use the term positive effect here to indicate that the yield or
response increases as the levels of a given factor increase according to some defined
order. In the same sense, a negative effect corresponds to a decrease in response
for increasing levels of the factor.

Consider, for example, the following data on temperature (factor A at levels 1,
o, and 3 in increasing order) and drying time dy, do, and d3 (also in increasing
order). The response is percent solids. These data are completely hypothetical
and given to illustrate a point.

A dq d» ds Total

t1 44 88 5.2 184
t2 75 85 24 184
t3 97 79 08 184

Total 21.6 252 84 552

Clearly the effect of temperature on percent solids is positive at the low drying
time d; but negative for high drying time d3. This clear interaction between
temperature and drying time is obviously of interest to the biologist, but, based
on the totals of the responses for temperatures ¢, to, and t3, the temperature
sum of squares, SSA, will yield a value of zero. We say then that the presence of
interaction is masking the effect of temperature. Thus, if we consider the average
effect of temperature, averaged over drying time, there is no effect. This then
defines the main effect. But, of course, this is likely not what is pertinent to the
biologist.

Before drawing any final conclusions resulting from tests of significance on the
main effects and interaction effects, the experimenter should first observe
whether or not the test for interaction is significant. If interaction is



564

Chapter 14 Factorial Experiments (Two or More Factors)

not significant, then the results of the tests on the main effects are meaningful.
However, if interaction should be significant, then only those tests on the main
effects that turn out to be significant are meaningful. Nonsignificant main effects
in the presence of interaction might well be a result of masking and dictate the
need to observe the influence of each factor at fixed levels of the other.

A Graphical Look at Interaction

The presence of interaction as well as its scientific impact can be interpreted nicely
through the use of interaction plots. The plots clearly give a pictorial view of
the tendency in the data to show the effect of changing one factor as one moves
from one level to another of a second factor. Figure 14.1 illustrates the strong
temperature by drying time interaction. The interaction is revealed in nonparallel
lines.

10 a
8 [
(2]}
S
5 7
c
(O]
S
£ 4
2]
ds
1 2 3
Temperature

Figure 14.1: Interaction plot for temperature—drying time data.

The relatively strong temperature effect on percent solids at the lower dry-
ing time is reflected in the steep slope at d;. At the middle drying time dy the
temperature has very little effect, while at the high drying time d3 the negative
slope illustrates a negative effect of temperature. Interaction plots such as this set
give the scientist a quick and meaningful interpretation of the interaction that is
present. It should be apparent that parallelism in the plots signals an absence
of interaction.

Need for Multiple Observations

Interaction and experimental error are separated in the two-factor experiment only
if multiple observations are taken at the various treatment combinations. For max-
imum efficiency, there should be the same number n of observations at each com-
bination. These should be true replications, not just repeated measurements. For
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example, in the yeast illustration, if we take n = 2 observations at each combina-
tion of temperature and drying time, there should be two separate samples and not
merely repeated measurements on the same sample. This allows variability due to
experimental units to appear in “error,” so the variation is not merely measurement
error.

14.3 Two-Factor Analysis of Variance

To present general formulas for the analysis of variance of a two-factor experiment
using repeated observations in a completely randomized design, we shall consider
the case of n replications of the treatment combinations determined by a levels of
factor A and b levels of factor B. The observations may be classified by means of a
rectangular array where the rows represent the levels of factor A and the columns
represent the levels of factor B. Each treatment combination defines a cell in our
array. Thus, we have ab cells, each cell containing n observations. Denoting the
kth observation taken at the ith level of factor A and the jth level of factor B by
Yijk, Table 14.1 shows the abn observations.

Table 14.1: Two-Factor Experiment with n Replications

B
A 1 2 e b Total Mean
1 Y111 Y121 e Y1b1 Y. Y.
Y112 Y122 t Y1v2
Yiin Y12n Tt Yibn
2 Y211 Y221 e Yob1 Ys. Uo..
Y212 Y222 T Y2b2
Y21n Y22n te Y2bn
a Yall Ya21 e Yabl Y. Ya..
Ya12 Ya22 te Yab2
Yaln Ya2n te Yabn
Total Y1 Yo e Y. Y.
Mean Y.1. Y.2. e Y.b. Y.

The observations in the (ij)th cell constitute a random sample of size n from a
population that is assumed to be normally distributed with mean p;; and variance
o?. All ab populations are assumed to have the same variance o2. Let us define



566

Chapter 14 Factorial Experiments (Two or More Factors)

the following useful symbols, some of which are used in Table 14.1:

Yij.
Yi.
Y,
Y.
Yij.

Yi..

Y.j.

Y.

sum of the observations in the (ij)th cell,

sum of the observations for the ith level of factor A,
sum of the observations for the jth level of factor B,
sum of all abn observations,

mean of the observations in the (ij)th cell,

mean of the observations for the ith level of factor A,

mean of the observations for the jth level of factor B,

= mean of all abn observations.

Unlike in the one-factor situation covered at length in Chapter 13, here we are
assuming that the populations, where n independent identically distributed ob-
servations are taken, are combinations of factors. Also we will assume throughout
that an equal number (n) of observations are taken at each factor combination. In
cases in which the sample sizes per combination are unequal, the computations are
more complicated but the concepts are transferable.

Model and Hypotheses for the Two-Factor Problem

Each observation in Table 14.1 may be written in the form

Yijk = Mij T €ijk;

where €;;; measures the deviations of the observed y;;; values in the (ij)th cell
from the population mean p,;. If we let (o3);; denote the interaction effect of the
tth level of factor A and the jth level of factor B, «; the effect of the ith level of
factor A, B; the effect of the jth level of factor B, and u the overall mean, we can

write

and then

pij =+ o+ B+ (aB)ij,

Yijk = 1+ i + B + (aB)ij + €iji,

on which we impose the restrictions

a

a b b
Z a; =0, ZB] =0, Z(aﬁ)m =0, Z(Ozﬂ)m = 0.
i=1 Jj=1

i=1 Jj=1

The three hypotheses to be tested are as follows:

1. H: ey =aa=---=a, =0,

H{: At least one of the «; is not equal to zero.

H i/: At least one of the §; is not equal to zero.
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2

3. Hy: (aB)n = (aB)iz =" = (aB)a =0,
H,": At least one of the (a8),; is not equal to zero.

We warned the reader about the problem of masking of main effects when inter-
action is a heavy contributor in the model. It is recommended that the interaction
test result be considered first. The interpretation of the main effect test follows,
and the nature of the scientific conclusion depends on whether interaction is found.
If interaction is ruled out, then hypotheses 1 and 2 above can be tested and the
interpretation is quite simple. However, if interaction is found to be present the
interpretation can be more complicated, as we have seen from the discussion of the
drying time and temperature in the previous section. In what follows, the structure
of the tests of hypotheses 1, 2, and 3 will be discussed. Interpretation of results
will be incorporated in the discussion of the analysis in Example 14.1.

The tests of the hypotheses above will be based on a comparison of independent
estimates of o2 provided by splitting the total sum of squares of our data into four
components by means of the following identity.

Partitioning of Variability in the Two-Factor Case

Theorem 14.1:

Sum-of-Squares Identity

a b n a b
D222 Wik =) =t (i 5. +an) (75 - 7.)°

i=1 j=1 k=1
a b
+ ”ZZ(@@: —¥i. — Y4 +7.)

i=1j=1 i=1 j=1 k=1

\V]
+
(]

—~
<
S

x>

N
<

Symbolically, we write the sum-of-squares identity as
SST =S5SA+ SSB+ SS(AB) + SSFE,

where SSA and SSB are called the sums of squares for the main effects A and
B, respectively, SS(AB) is called the interaction sum of squares for A and B, and
SSFE is the error sum of squares. The degrees of freedom are partitioned according
to the identity

abn—1=(a—-1)+0b—-1)+(a—1)(b—1)+ab(n—1).

Formation of Mean Squares

If we divide each of the sums of squares on the right side of the sum-of-squares
identity by its corresponding number of degrees of freedom, we obtain the four
statistics

, _ 5S4

SSB ) SS(AB)
S

5 = G SSE

53 (a—1)(b—1)" ~ab(n—1)

a—1’ 2T 1

All of these variance estimates are independent estimates of 02 under the condition
that there are no effects a;, 55, and, of course, (af),;. If we interpret the sums of
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squares as functions of the independent random variables y111, Y112, - - - , Yabn, it iS
not difficult to verify that
[ SSA -
PANE
Bsh =8| 22| <o a_1§jaz,
[ SSB
2\ _ o2 1 Z 2
E(SQ)_E-b_1] b—]_ ﬂj?
[ SS(AB)
E 2 — B — 2
(53) _(a—l)(b—l)] 7 +(a—1 )(b—1) “ Z 1321 (085
SSE
E(S*)=FE|——=| =07
(57) | ab(n — 1)] o

from which we immediately observe that all four estimates of o2 are unbiased when
H}, Hy, and H, arc truc.

To test the hypothesis H|, that the effects of factors A are all equal to zero, we
compute the following ratio:

F-Test for 52
1
Factor A fi= 32

which is a value of the random variable F; having the F-distribution with a — 1
and ab(n—1) degrees of freedom when H,, is true. The null hypothesis is rejected
at the a-level of significance when f; > f,[a — 1, ab(n — 1)].

Similarly, to test the hypothesis H(/)/ that the effects of factor B are all equal to
zero, we compute the following ratio:

F-Test for 2
53
Factor B Ja = 32

which is a value of the random variable F5 having the F-distribution with b —1
and ab(n — 1) degrees of freedom when H|, is true. This hypothesis is rejected
at the a-level of significance when fo > f,[b— 1,ab(n — 1)].

Finally, to test the hypothesis H(;”, that the interaction effects are all equal to zero,
we compute the following ratio:

F-Test for 2
Interaction fs=—=,

which is a value of the random variable F3 having the F-distribution with
(a —1)(b — 1) and ab(n — 1) degrees of freedom when H, is true. We con-
clude that, at the a-level of significance, interaction is present when f3 >
fal(a = 1)(b—1),ab(n — 1)].

As indicated in Section 14.2, it is advisable to interpret the test for interaction
before attempting to draw inferences on the main effects. If interaction is not sig-
nificant, there is certainly evidence that the tests on main effects are interpretable.
Rejection of hypothesis 1 on page 566 implies that the response means at the levels
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of factor A are significantly different, while rejection of hypothesis 2 implies a simi-
lar condition for the means at levels of factor B. However, a significant interaction
could very well imply that the data should be analyzed in a somewhat different
manner—perhaps observing the effect of factor A at fixed levels of factor
B, and so forth.

The computations in an analysis-of-variance problem, for a two-factor experi-
ment with n replications, are usually summarized as in Table 14.2.

Table 14.2: Analysis of Variance for the Two-Factor Experiment with n Replications

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f
Main effect:

2
A SSA a—1 s3 =554 fi=3%3

82
B SSB b—1 s3 =258 fo=3
Two-factor
interactions:

2
AB SS(AB)  (a—1)(b—1) s3=pals  fa=%
Error SSE ab(n — 1) s? = %
Total SST abn — 1

Example 14.1:/In an experiment conducted to determine which of 3 different missile systems is
preferable, the propellant burning rate for 24 static firings was measured. Four dif-
ferent propellant types were used. The experiment yielded duplicate observations
of burning rates at each combination of the treatments.

The data, after coding, are given in Table 14.3. Test the following hypotheses:
(a) H(;: there is no difference in the mean propellant burning rates when different
missile systems are used, (b) Hy: there is no difference in the mean propellant
burning rates of the 4 propellant types, (c) H(/)”: there is no interaction between
the different missile systems and the different propellant types.

Table 14.3: Propellant Burning Rates

Missile Propellant Type
System bl b2 b3 b4
a; 34.0 30.1 29.8 29.0
32.7 32.8 26.7 28.9
asz 32.0 30.2 28.7 27.6
33.2 29.8 28.1 27.8
as 28.4 27.3 29.7 28.8

29.3 28.9 27.3 29.1

Solution: 1. (a) Hy: ay = as = az = 0.

(b) H(l)li pr= B2 =Bz =pB4=0.
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///

(c) Hy: (aB)11 = (aB)12 ="+ = (aB)34 = 0.

) H,

2. (a) H,: 5 At least one of the a; is not equal to zero.

b) H At least one of the 3; is not equal to zero.

(¢) H': At least one of the (af8);; is not equal to zero.

The sum-of-squares formula is used as described in Theorem 14.1. The analysis
of variance is shown in Table 14.4.

Table 14.4: Analysis of Variance for the Data of Table 14.3

Source of Sum of Degrees of Mean Computed
Variation Squares  Freedom = Square f
Missile system 14.52 2 7.26 5.84
Propellant type 40.08 3 13.36 10.75
Interaction 22.16 6 3.69 2.97
Error 14.91 12 1.24

Total 91.68 23

The reader is directed to a SAS GLM Procedure (General Linear Models) for
analysis of the burning rate data in Figure 14.2. Note how the “model” (11 degrees
of freedom) is initially tested and the system, type, and system by type interac-
tion are tested separately. The F-test on the model (P = 0.0030) is testing the
accumulation of the two main effects and the interaction.

a) Reject H o and conclude that different missile systems result in different mean
0
propellant burning rates. The P-value is approximately 0.0169.

(b) Reject H(/)/ and conclude that the mean propellant burning rates are not the
same for the four propellant types. The P-value is approximately 0.0010.

(c¢) Interaction is barely insignificant at the 0.05 level, but the P-value of approx-
imately 0.0513 would indicate that interaction must be taken seriously.

At this point we should draw some type of interpretation of the interaction. It
should be emphasized that statistical significance of a main effect merely implies
that marginal means are significantly different. However, consider the two-way
table of averages in Table 14.5.

Table 14.5: Interpretation of Interaction

b1 b> bs ba Average

a; 33.35 31.45 28.25 28.95 30.50
az 32.60 30.00 28.40 27.70 29.68
as 28.85 28.10 28.50 28.95 28.60

Average 31.60 29.85 28.38 28.53

It is apparent that more important information exists in the body of the table—
trends that are inconsistent with the trend depicted by marginal averages. Table
14.5 certainly suggests that the effect of propellant type depends on the system
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The GLM Procedure

Dependent Variable: rate

Sum of
Source DF Squares  Mean Square F Value Pr > F
Model 11 76.76833333 6.97893939 5.62 0.0030
Error 12 14.91000000 1.24250000
Corrected Total 23  91.67833333
R-Square Coeff Var Root MSE rate Mean
0.837366 3.766854 1.114675 29.59167
Source DF  Type III SS Mean Square F Value Pr > F
system 2  14.52333333 7.26166667 5.84 0.0169
type 3 40.08166667  13.36055556 10.75 0.0010
system*type 6 22.16333333 3.69388889 2.97 0.0512

Figure 14.2: SAS printout of the analysis of the propellant rate data of Table 14.3.

being used. For example, for system 3 the propellant-type effect does not appear
to be important, although it does have a large effect if either system 1 or system
2 is used. This explains the “significant” interaction between these two factors.
More will be revealed subsequently concerning this interaction. A

Example 14.2:1 Referring to Example 14.1, choose two orthogonal contrasts to partition the sum

Solution:

of squares for the missile systems into single-degree-of-freedom components to be
used in comparing systems 1 and 2 versus 3, and system 1 versus system 2.
The contrast for comparing systems 1 and 2 with 3 is

wi = [, + p2. — 243,

A second contrast, orthogonal to wy, for comparing system 1 with system 2, is
given by ws = py. — po.. The single-degree-of-freedom sums of squares are

[244.0 + 237.4 — (2)(228.8)]?

)12+ 1)2 + (—2)7] 11.80

stl =

and

(244.0 — 237.4)2
(8)[(1)% + (-1)?]

Notice that SSwy + SSwy = SSA, as expected. The computed f-values corre-
sponding to w; and ws are, respectively,

SSUJQ = = 2.72.

11.80

2.72

h= T 124

Compared to the critical value fy05(1,12) = 4.75, we find f; to be significant.
In fact, the P-value is less than 0.01. Thus, the first contrast indicates that the
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hypothesis

1
Hy: 5(,&1. + p2.) = ps.

is rejected. Since fo < 4.75, the mean burning rates of the first and second systems
are not significantly different. A

Impact of Significant Interaction in Example 14.1

If the hypothesis of no interaction in Example 14.1 is true, we could make the
general comparisons of Example 14.2 regarding our missile systems rather than
separate comparisons for each propellant. Similarly, we might make general com-
parisons among the propellants rather than separate comparisons for each missile
system. For example, we could compare propellants 1 and 2 with 3 and 4 and
also propellant 1 versus propellant 2. The resulting fratios, each with 1 and 12
degrees of freedom, turn out to be 24.81 and 7.39, respectively, and both are quite
significant at the 0.05 level.

From propellant averages there appears to be evidence that propellant 1 gives
the highest mean burning rate. A prudent experimenter might be somewhat cau-
tious in drawing overall conclusions in a problem such as this one, where the fratio
for interaction is barely below the 0.05 critical value. For example, the overall evi-
dence, 31.60 versus 29.85 on the average for the two propellants, certainly indicates
that propellant 1 is superior, in terms of a higher burning rate, to propellant 2.
However, if we restrict ourselves to system 3, where we have an average of 28.85
for propellant 1 as opposed to 28.10 for propellant 2, there appears to be little
or no difference between these two propellants. In fact, there appears to be a
stabilization of burning rates for the different propellants if we operate with sys-
tem 3. There is certainly overall evidence which indicates that system 1 gives a
higher burning rate than system 3, but if we restrict ourselves to propellant 4, this
conclusion does not appear to hold.

The analyst can conduct a simple t-test using average burning rates for system
3 in order to display conclusive evidence that interaction is producing considerable
difficulty in allowing broad conclusions on main effects. Consider a comparison of
propellant 1 against propellant 2 only using system 3. Borrowing an estimate of
o? from the overall analysis, that is, using s? = 1.24 with 12 degrees of freedom,
we have

0.75 0.75
It = ——— = = 0.67,
V2s?/n V1.24

which is not even close to being significant. This illustration suggests that one must
be cautious about strict interpretation of main effects in the presence of interaction.

Graphical Analysis for the Two-Factor Problem of Example 14.1

Many of the same types of graphical displays that were suggested in the one-factor
problems certainly apply in the two-factor case. Two-dimensional plots of cell
means or treatment combination means can provide insight into the presence of
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interactions between the two factors. In addition, a plot of residuals against fitted
values may well provide an indication of whether or not the homogeneous variance
assumption holds. Often, of course, a violation of the homogeneous variance as-
sumption involves an increase in the error variance as the response numbers get
larger. As a result, this plot may point out the violation.

Figure 14.3 shows the plot of cell means in the case of the missile system
propellant illustration in Example 14.1. Notice how graphically (in this case) the
lack of parallelism shows through. Note the flatness of the part of the figure showing
the propellant effect for system 3. This illustrates interaction among the factors.
Figure 14.4 shows the plot of residuals against fitted values for the same data.
There is no apparent sign of difficulty with the homogeneous variance assumption.

34
1
2
32 \
1
®
T 304 2
o
3 3 :13
28 2 5
26 —
1 2 3 4
Type

Figure 14.3: Plot of cell means for data of Example 14.1. Numbers represent missile
systems.
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Figure 14.4: Residual plot of data of Example 14.1.



574 Chapter 14 Factorial Experiments (Two or More Factors)

Example 14.3:1 An electrical engineer is investigating a plasma etching process used in semicon-
ductor manufacturing. It is of interest to study the effects of two factors, the CyFg
gas flow rate (A) and the power applied to the cathode (B). The response is the
etch rate. Each factor is run at 3 levels, and 2 experimental runs on etch rate are
made for each of the 9 combinations. The setup is that of a completely randomized
design. The data are given in Table 14.6. The etch rate is in A°/min.

Table 14.6: Data for Example 14.3
Power Supplied

CsFg Flow Rate 1 2 3
1 288 488 670
360 465 720
2 385 482 692
411 521 724
3 488 595 761

462 612 801

The levels of the factors are in ascending order, with level 1 being low level and
level 3 being the highest.

(a) Show an analysis of variance table and draw conclusions, beginning with the
test on interaction.

(b) Do tests on main effects and draw conclusions.

Solution: A SAS output is given in Figure 14.5. From the output we learn the following.

The GLM Procedure
Dependent Variable: etchrate

Sum of
Source DF Squares  Mean Square F Value Pr > F
Model 8 379508.7778 47438.5972 61.00 <.0001
Error 9 6999.5000 T77.7222

Corrected Total 17 386508.2778

R-Square Coeff Var Root MSE etchrate Mean
0.981890 5.057714 27.88767 551.3889
Source DF  Type III SS Mean Square F Value Pr > F
c2f6 2 46343.1111 23171.5556 29.79  0.0001
power 2 330003.4444  165001.7222 212.16  <.0001
c2f6*power 4 3162.2222 790.5556 1.02 0.4485

Figure 14.5: SAS printout for Example 14.3.

(a) The P-value for the test of interaction is 0.4485. We can conclude that there
is no significant interaction.

(b) There is a significant difference in mean etch rate for the 3 levels of CoF¢ flow
rate. Duncan’s test shows that the mean etch rate for level 3 is significantly



