Introduction to MATLAB Mustafa Hamid 2" Stage, 2™ Course

IMPORTING AND EXPORTING DATA

When you get into serious programming you will often need to store
data on a disk. The process of moving data between MATLAB and
disk files is called importing (from disk files) and exporting (to disk
files). Data are saved in disk files in one of two formats: text or
binary. In text format, data values are ASCII codes, and can be
viewed in any text editor. In binary format, data values are not
ASCII codes and cannot be viewed in a text editor. Binary format is
more efficient in terms of storage space required. This lecture
provides a brief summary of the main ways in which MATLAB
imports and exports data. For full details consult MATLAB Help by
searching the topic Importing and Exporting Data. Also search for
the topic import wizard (or type, in the Command Window, help

uiimport).

The load and save commands
If you want to save data between MATLAB sessions the save and

load commands are probably the best ones to use.

Exporting text (ASCII) data
ASCII stands for American Standard Code for Information

Interchange. Computers can only understand numbers, so an ASCII
code is the numerical representation of a character such as 'a' or '@’

or an action of some sort.

Introduction to MATLAB Mustafa Hamid 2" Stage, 2™ Course

Examples
% Save all variables from the workspace to test.mat:
save test.mat

% Save two variables, where FILENAME is a variable:
savefile = 'pqfile.mat’;

p =rand(1, 10);

q = ones(10);

save(savefile, 'p', 'q'");

To export (save) the array
A=

1 2 3
4 5 6
in “delimited” ASCII format in the file myData.txt use the

command, If you view myData.txt in a text editor (or type it in the

Command Window) it looks like this:

1.0000000e+000 2.0000000e+000 3.0000000e+000
4.0000000e+000 5.0000000e+000 6.0000000e+000

Delimiters are the characters used to separate the data values in the
file—spaces by default. You can use tabs instead of spaces by
specifying the -fabs qualifier instead of -ascii. If you save character
arrays (strings) in this way, the ASCII codes of the characters are

written to the file.

Importing text (ASCII) data
The load command is the reverse of save, but has a curious twist. If

the array A has been saved in myData.txt as above, the command,

Introduction to MATLAB Mustafa Hamid 2" Stage, 2™ Course

load myData.txt
creates a variable in the workspace with the same name as the file,

minus the extension, i.e., myData. If you don’t want the filename as
the variable name use the functional form of the command, e.g.,

A =load('myData.txt")
Data imported in this way doesn’t have to be created by MATLAB.

You can create it in a text editor, or it could be created by any other

program that exports data in ASCII format.

Exporting binary data
The command,

save filename Xy z

saves the variables x, y, and z in the file filename.mat in MATLAB
proprietary binary format, i.e., such a MAT-file can only be used
by MATLAB.

Note:

If no variables are listed the entire workspace is saved.

The extension .mat is the default—you can specify a different
extension.

Seek help for all the save options.

Importing binary data

The command,

load filename

loads all the variables from filename.mat into the workspace; see

help for all the load options.

Introduction to MATLAB Mustafa Hamid 2" Stage, 2™ Course

fprintf() Function
With this function we can display formatted output as controlled
by the following:

Value Type Conversion | Details
Integer, signed ¥dor%i | Base 10 values
su Base 10
[nteger, unsigned 50 ol :
$X Base 16 (hexadecimal), lowercase letters a-f
X Same as $x, uppercase letters A-F
8t Fixed-point notation
%e Exponential notation, such as 3.141593e+00
Floating-point $E Same as %e, but uppercase, such as 3.141593E+00
number % The more compact of $e or % £, with no trailing
Zeros
%G The more compact of $E or % £, with no trailing
Zeros
Characters sC Single character
%S String of characters
Action Flag | Example
Print sign character (+ or -). '+' | $+5.2fF
Pad with zeros. '0' [%05.2fF

Two commands that are frequently used to generate output are:
disp and fprintf. The main differences between these two
commands can be summarized as follows

disp . Simple to use.

. Provide limited control over the appearance of output
fprintf . Slightly more complicated than disp.

. Provide total control over the appearance of output

Some examples of fprintf function:

10

Introduction to MATLAB Mustafa Hamid 2" Stage, 2™ Course

Ofprintf('%0.31,12345.6789);

> 12345.679

[fprintf('%012.31,12345.6789)

> 00012345.679

[fprintf('%012.51,12345.6789);

> (012345.67890

[fprintf("%0.3g and %0.3f,7.36019,7.36019);

> 7.36 and 7.360 (g: round to 10)

[fprintf('%0.3f , %06.11,7.36,-1.25);

> 7.360,-001.3

] fprintf('78 in Hexa=%X while in Octa=%o0.",78,78);
> 78 in Hexa=4E while in Octa=116.

[fprintf('"Planck"s constant=%0.6G Js',6.6260688e-34);
> Planck's constant=6.62607E-034 Js

] fprintf('Planck"s constant=%0.6E Js',6.6260688¢e-34);
> Planck's constant=6.626069E-034 Js

[fprintf('Name:\t%s\n Age:\t%d','/Rami',28);

> Name: Rami

Age: 28

1 R=52;V=12;

fprintf('when the Voltage=%g Volt\n and Resistor=%g Ohm\n then
the Total Power=%0.3g Watt',V,R,V"2/R);

11

Introduction to MATLAB Mustafa Hamid 2" Stage, 2™ Course

> when the Voltage=12 Volt
and Resistor=52 Ohm
then the Total Power=2.77 Watt

Probability
Here is a simple example of probability in MATLAB.
Spinning Coins

When a fair (unbiased) coin is spun, the probability of getting
heads or tails is 0.5 (50%). Since a value returned by rand is
equally likely to anywhere in the interval [0, 1) we can represent
heads, say, with a value less than 0.5, and tails otherwise.

Suppose an experiment calls for a coin to be spun 50 times, and the
results recorded. In real life you may need to repeat such an
experiment a number of times; this is where computer simulation is
handy. The following script simulates spinning a coin 50 times:

Q/ Write a MATLAB program to simulate spinning a coin 50
times. Use rand function.

for i = 1:50
r = rand;
if r < 0.5
fprintf(’H’)
else
fprintf(’T?)
end
end
fprintf(’\n’) %» newline

12

