Application of Gold Nanoparticles for Electrochemical DNA Biosensor

Ahmed Mishaal Mohammed,^{1,2} Ruslinda A. Rahim,² Ibraheem Jaleel Ibraheem,¹ Foo Kai Loong,² Hasrul Hisham,² Uda Hashim,² and Yarub Al-Douri² Show more

> Academic Editor: M. Ghoranneviss Received20 Oct 2013 Accepted03 Apr 2014 Published25 May 2014

Abstract

An electrochemical DNA biosensor was successfully fabricated by using (3aminopropyl)triethoxysilane (APTES) as a linker molecule combined with the gold nanoparticles (GNPs) on thermally oxidized SiO₂ thin films. The SiO₂ thin films surface was chemically modified with a mixture of APTES and GNPs for DNA detection in different time periods of 30 min, 1 hour, 2 hours, and 4 hours, respectively. The DNA immobilization and hybridization were conducted by measuring the differences of the capacitance value within the frequency range of 1 Hz to 1 MHz. The capacitance values for DNA immobilization were 160 μ F, 77.8 μ F, 70 μ F, and 64.6 μ F, respectively, with the period of time from 30 min to 4 hours. Meanwhile the capacitance values for DNA hybridization were 44 μ F, 54 μ F, 55 μ F, and 61.5 μ F, respectively. The capacitance value of bare SiO₂ thin film was 0.42 μ F, which was set as a base line for a reference in DNA detection. The differences of the capacitance value between the DNA immobilization and hybridization revealed that the modified SiO₂ thin films using APTES and GNPs were successfully developed for DNA detection.