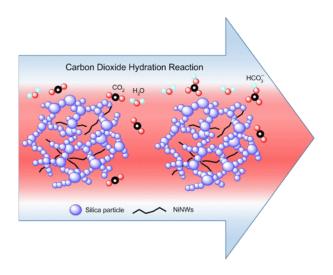
https://pubs.acs.org/doi/10.1021/acsomega.8b03361

Catalytic Performance of Nickel Nanowires Immobilized in Silica Aerogels for the CO₂ Hydration Reaction


Khalil T. Hassan, Jiabin Wang, Xiao Han, Jon J. Sharp, Gaurav A. Bhaduri , Vladimir Martis , and Lidija Šiller

ACS Omega 2019, 4, 1, 1824–1830 Publication Date:January 23, 2019

https://doi.org/10.1021/acsomega.8b03361 Copyright © 2019 American Chemical Society

Abstract

In this work, wavy nickel nanowires (NiNWs) were immobilized on mesoporous silica (SiO₂) aerogels by the sol-gel method. We measured the catalytic activity of pure NiNWs and NiNW-SiO₂ aerogel composites toward the CO₂ hydration reaction (CHR) when they are in water. Dynamic vapor sorption (DVS) analysis was performed at levels of 50% CO₂ and 50% H₂O vapor for SiO₂ aerogels, immobilized nickel nanoparticles (NiNPs) on silica aerogel and NiNW-SiO₂ aerogel composites, in order to determine catalytic activity for CHR in the gaseous phase. The results from DVS analysis (gaseous phase) and CHR (aqueous phase) showed that NiNW-SiO₂ aerogel composites are good heterogeneous catalysts for CHR in both gaseous and aqueous phases but they are less active than NiNP-SiO₂ aerogel composites.

Key wordsSilica aerogel, NiNWs, CO2 hydration